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a b s t r a c t

In this paper, we develop a novel, goal-oriented reduced-order modeling methodology.
The approach uses a low-dimensional basis function set that contains both global and lo-
cal, goal-oriented basis functions. Compared to reduced-order models using the standard
proper orthogonal decomposition (POD) basis, these new goal-oriented POD basis func-
tions lead to better approximations of given quantities of interest (QoI) while maintaining
accuracy in the evolution of the state. We demonstrate this approach for two problems
involving Burgers equation. In the first problem, the QoI is the spatial average of the solu-
tion over various regions. The QoI in the second problem is the feedback control based on
a MinMax control design with an extended Kalman filter. In both cases, approximations of
the QoI and the state variables are more accurate using the goal-orientated POD than using
the standard POD basis with comparable online computational costs.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Repeated numerical simulations of large-scale, nonlinear dynamical systems are required in many engineering control
and optimization problems. In addition, control laws based on compensators require the real-time simulation of nonlinear
models that incorporate state measurements. Direct, full-order numerical simulations require large discretized systems for
adequate approximation and are not feasible in many of these applications. Thus, reduced-order models (ROMs) based on
the proper orthogonal decomposition (POD) combined with Galerkin projection [1] have been widely used to provide fast,
accurate simulations of these large nonlinear systems.

Essentially, POD basis functions are solution-adapted basis functions that provide the optimal basis to represent a given
set of simulation data or snapshots. In many cases, a handful of the leading POD modes can represent the most significant
characteristics of the dynamical system, e.g., patterns in turbulent flows dominated by organized (coherent) structures.
However, for highly non-stationary, nonlinear problems, POD-Galerkin models may lose their effectiveness. First of all, like
the Fourier basis, PODmodes are global; thus energy associated with each mode is distributed throughout the domain. As a
result, onemay have to use a large number of POD basis functions to accurately capture the energy transfer betweenmodes,
leading to increased computational cost. Secondly, the discarded POD modes can have a marked impact on the system,
see [2]. Although they only hold a fractional share of the energy, their contribution to the dynamics of the retained modes
can be significant. Therefore, the POD-ROM of complex systems can be unstable even when the POD basis retained in the
ROM retains 99% of energy [3]. To obtain an accurate POD-ROM for complex systems, research has been done in two main
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directions: (i) strategies to construct a more representative basis; (ii) modeling the effects of the discarded POD modes in
the ROM. In this paper, we mainly focus on the first direction. Several methods have been proposed in the literature in
this direction. They aim at improving the POD basis functions: (i) by the choice of locations of snapshots [4]; (ii) by the
adjustment of weights on snapshots [5–7]; (iii) by the choice of inner product [7–9]; (iv) by the enrichment of the POD
basis, e.g., to minimize the residual of the ROM [10–12], to fit certain physical phenomena [13], or to account for parametric
changes [14]; and (v) by the choice of the time windows on which the POD method is performed [15,16]; etc.

In this paper, we develop a new basis selection strategy for the POD-ROM to overcome the degraded efficiency when
applied to complex systems. The new approach is motivated by the following key observations: The POD basis is obtained
by minimizing the time average projection error of the snapshots to the space spanned by the basis on the whole spatial
domain in the entire time range. Therefore the leading POD basis functions represent the global features of the system
well. This basis could fail to approximate the quantity of interest (e.g., the average value of a state variable in a particular
subdomain) well and fails to display the features with small time scales (e.g. the high-frequency modes in fast transient
flows). Therefore, to achieve an accurate representation of the system information, the ROM basis in the proposed approach
consists of global and localmodes. The global modes are the leading POD basis functions, while, the local modes are selected
for subintervals of time in a goal-oriented way.

This novel method for local mode generation synthesizes ideas from the PID method in [15] and the goal-oriented
approach proposed in [5]. By considering residuals of the discrepancies between the snapshots and their projection onto the
subspace spanned by global modes, we seek local modes that maximize the contribution of the residuals to the quantities of
interest over short (time) subintervals. Hence, they are able to capture important small temporal scales and, usually, small
spatial scales that are missed in the standard POD approximation. This new basis selection strategy leads to new physical
insights into the reduced-order basis and yields an efficient, reliable way to achieve ROMs for complex systems.

The remainder of the paper is organized as follows: the POD method is briefly introduced in Section 2; the new goal-
oriented model reduction method is developed in Section 3; the optimization problem is discussed in Section 4; numerical
examples illustrating the effectiveness of the proposed method are presented in Sections 5 and 6. Finally, we provide brief
conclusions and directions of future work.

2. POD-Galerkin reduced-order models

The POD-Galerkin method to produce reduced-order models for nonlinear PDEs has two main steps, computation of
the POD basis and construction of the low-dimensional dynamic model through Galerkin projection. In the first step, one
precomputes simulation data that is representative of the behavior expected for the surrogate model. For the Burgers
equation, e.g. [17], the data consists ofm finite element solutions at uniform timesteps, referred to as simulation snapshots.
The POD method seeks a low-dimensional basis that optimally approximates the snapshot data. Mathematically speaking,
given rank d snapshot data from a Hilbert space H , it chooses {φ1(x), . . . , φr(x)} ⊂ H , for any r ≤ d, to minimize the
averaged projection error
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subject to the conditions (φi, φj)H = δij, 1 ≤ i, j ≤ r , where δij is the Kronecker delta. Note that other inner product spaces
can be readily implemented, but H = L2 is typically used in practice. To solve (2.1), consider the following eigenvalue
problem:
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for 1 ≤ i, j ≤ m. The so-called temporal autocorrelation matrix K ∈ Rm×m is symmetric, positive semi-definite with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd > 0, and corresponding (orthonormal) eigenvectors {ψj}

d
j=1. It can be shown [18–20] that

the solution to (2.1) is given by
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(ψj)ℓw(·, tℓ), 1 ≤ j ≤ r, (2.3)

where (ψj)ℓ is the ℓ-th component of the eigenvector ψj. The POD approximation ofw(x, t) is

wr(x, t) ≡

r
j=1

φj(x)aj(t), (2.4)

where {aj(t)}rj=1 are time-varying POD basis coefficient functions that must be determined. In most cases, r is chosen to be
significantly smaller than both d and the number of spatial degrees of freedom (DOF) used to discretize the full-order model
(FOM).
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