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a b s t r a c t

We consider the problem of local exponential stabilization of the nonlinear Boussinesq
equations with control acting on portion of the boundary. In particular, given a steady state
solution on an bounded and connected domainΩ ⊂ R2, we show that a finite number of
controls acting on a part of the boundary through Neumann/Robin boundary conditions is
sufficient to stabilize the full nonlinear equations in a neighborhood of this steady state
solution. Dirichlet boundary conditions are imposed on the rest of the boundary. We prove
that a stabilizing feedback control law can be obtained by solving a Linear Quadratic
Regulator (LQR) problem for the linearized Boussinesq equations. Numerical result are
provided for a 2D problem to illustrate the ideas.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is motivated by problems that occur naturally in modeling, designing and controlling energy efficient
building systems. A standard problem of interest is concerned with controlling the indoor environment for both comfort
(temperature, humidity) and air quality. Although computational fluid dynamics plays a huge role in much of this research,
very little has been done on the mathematical and computational treatment of the distributed parameter control problems
associated with such systems. We consider a boundary control problem governed by the Boussinesq equations that model
heat transfer in a viscous incompressible heat-conducting fluid. The Boussinesq equations consist of the Navier–Stokes
equations coupled to the convection–diffusion equation for temperature. This model assumes that the fluid has a uniform
density.

We focus on a stabilization problem where the control inputs are limited to small portion of the boundary and the
model system is governed by the Boussinesq equations on an open bounded and connected domainΩ ⊂ R2 with Lipschitz
boundary Γ . The challenge arises from the stabilization of the Navier–Stokes equations and its coupling with the convec-
tion–diffusion equation for temperature. Controllability and stabilizability of the Navier–Stokes equations and Boussinesq
equations have been widely discussed in [1–6]. The controllability results are mainly studied with the help of Carleman and
observability inequalities, duality, and variational principles. Although Linear Quadratic Regulator (LQR) control design has
been used to obtain stabilizing feedback controllers for the Navier–Stokes equations (see [7–14]), the majority of this work
either assumes distributed control or Dirichlet boundary control. The most challenging case arises when using Dirichlet
boundary control for Navier–Stokes equations in 3D. In particular, in [10,12] it is shown that in order to apply LQR theory to
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Navier–Stokes equations with Dirichlet boundary control, a compatibility condition needs to be satisfied in the 3D case. This
condition has the form v(0)|Γ = (v|Γ )t=0 = uv(0), where v is the velocity field and uv ∈ L2(Γ )d is the control input. Im-
posing this condition produces a rather complicated Riccati-like equation which is difficult to solve by standard numerical
approaches (see [15]). In the paper [16] Badra considered a boundary control problem where Neumann boundary control
acted on the entire boundary. Badra used a Lyapunov function method to stabilize the Boussinesq equations.

The specific problem of interest in this paper is a 2D problemwith mixed boundary conditions, where the control inputs
are of Neumann/Robin type and finite in number. In this setting, we employ a Riccati-based feedback controller to stabilize
the nonlinear system. Moreover, under suitable conditions (see [17–21]) it is known that Robin boundary conditions can
be used to approximate Dirichlet boundary conditions. We take advantage of this approximation to develop numerical
algorithms that apply to Robin, Neumann, and Dirichlet boundary control problems. However, with mixed boundary
conditions the solutions to the stationary Boussinesq equations lose regularity (see [22–24]) and this adds an additional
difficulty.

Recently, Nguyen and Raymond in [25] also considered the stabilization problem Navier–Stokes equations with mixed
boundary condition, where a localized Dirichlet boundary control is applied. In order to ensure regularity for the stationary
problem, the authors assume that the junction between a segment with Neumann boundary condition and a segment with
Dirichlet boundary condition forms a right angle. This regularity vanishes as the angle approaches π which occurs in the
room problem because of the geometry of the room. This issue will be discussed fully in Section 2.2.

The outline of this paper is as follows.We first discuss the stabilizability of the linearized Boussinesq equationswith finite
dimensional controllers and set up the LQR control problem for the system. Sufficient conditions are given for stabilizability
of the linearized system for the case where the steady state solution is unstable. An LQR problem is employed to generate a
linear feedback operator by solving a suitable Riccati operator equation. Then we show that the semigroup generated by the
linearized closed-loop system operator is exponentially stable and apply a fixed point theorem to prove that the controlled
nonlinear Boussinesq system is locally exponentially stable. Finally, we provide numerical results for a 2D room model by
employing a penalized finite element method. The numerical results illustrate the theoretical results and provide some
indication of the effectiveness of the LQR designed feedback control.

2. Model description

In order to focus the ideas, consider the 2D version of a heated room shown in Fig. 1. Assume that the airflow is coming
in through the inlet vent, denoted by ΓI, which is defined as a portion of the boundary Γ , with Robin boundary control for
both velocity and temperature. The airflow exits at the vent defined by the boundary ΓO with stress-free fluid and natural
(or unforced) convective flux boundary conditions. In addition, let ΓH denote the radiant heating strip on the floor with
Neumann boundary control for temperature. We impose no slip boundary conditions for the velocity on Γf = Γ \ (ΓI ∪ΓO)
and zero Dirichlet boundary condition for temperature on ΓD = Γ \ (ΓI ∪ΓO ∪ΓH). Note that the boundaries ΓI, ΓO and ΓH
are disjoint. This simple zone configuration is typical of the systems of interest and will be used to illustrate the theoretical
and numerical results developed below. We turn now to the more general case.

2.1. Boussinesq equations with mixed boundary conditions

Assume Ω ⊆ R2 is an open bounded and connected domain with a regular boundary Γ . The Boussinesq model is
given by

∂v
∂t

+ v · ∇v, =
1
Re
1v − ∇p + ē

Gr

Re2
θ + fv inΩ, (2.1)

div v = 0 inΩ, (2.2)
∂θ

∂t
+ v · ∇θ =

1
RePr

1θ + fθ inΩ, (2.3)

where v(x, t) is the velocity, p(x, t) is the pressure, θ(x, t) is the fluid temperature, Re is the Reynolds number, Gr is the
Grashof number, Pr is the Prandtl number, and ē = [0, 1]T is the gravitational force direction. We assume that fv is a time
independent external body force and fθ is a time independent heat source density.

In order to set up the abstract formulation for the mixed boundary conditions, we introduce the divergence free spaces
for velocity

H = {v ∈ (L2(Ω))2 : div v = 0, v · n|Γf = 0},

where n denotes the outward unit normal vector with respect to the domainΩ ,

Vs
= (Hs(Ω))2 ∩ H, s ∈ R,

and

Vs
Γf

= {v ∈ (Hs(Ω))2 : div v = 0, v|Γf = 0}, s > 1/2.
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