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a b s t r a c t

We propose three Fourier spectral methods, i.e., the split-step Fourier spectral (SSFS), the
Crank–Nicolson Fourier spectral (CNFS), and the relaxation Fourier spectral (ReFS) meth-
ods, for solving the fractional nonlinear Schrödinger (NLS) equation. All of them are mass
conservative and time reversible, and they have the spectral order accuracy in space and
the second-order accuracy in time. In addition, the CNFS and ReFSmethods are energy con-
servative. The performance of these methods in simulating the plane wave and soliton dy-
namics is discussed. The SSFSmethod preserves the dispersion relation, and thus it is more
accurate for studying the long-time behaviors of the plane wave solutions. Furthermore,
our numerical simulations suggest that the SSFS method is better in solving the defocusing
NLS, but the CNFS and ReFS methods are more effective for the focusing NLS.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The fractional Schrödinger equation is a nonlocal dispersive equation, which was first introduced in [1,2] by generalizing
the Feynman path integral over Lévy trajectories. Recently, it has also been derived as the continuum limit of a microscopic
lattice systemwith long-range interactions [3]. The nonlocality of the fractional Schrödinger equation enables it to describe
new phenomena which are absent from the standard Schrödinger equation [4–7]. However, the nonlocality also introduces
considerable challenges in finding the solutions of the fractional Schrödinger equation. Hence, the understanding of its
solutions still remains limited. In this paper, we propose three mass-conservative Fourier spectral methods for numerically
solving the fractional nonlinear Schrödinger (NLS) equation, and the performance of these methods is examined and
compared both analytically and numerically.

We consider the fractional nonlinear Schrödinger (NLS) equation in the semiclassical regime [8–10]:

iε
∂u(x, t)
∂t

= εα(−∆)α/2u(x, t)+ β|u(x, t)|2σu(x, t), t > 0, (1.1)

u(x, 0) = ψ(x), (1.2)

where i =
√

−1, and u(x, t) is a complex-valued wave function of x ∈ Rd (for d = 1, 2, or 3) and t ≥ 0. 0 < ε ≤ 1 is
a small semiclassical parameter, and the constant σ > 0. The parameter β ∈ R describes the strength of short-range (or
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local) nonlinear interactions; if β is positive (resp. negative), the interactions are repulsive or defocusing (resp. attractive or
focusing). The fractional Laplacian −(−∆)α/2 is defined via a pseudo-differential operator [11–14]:

−(−∆)α/2u(x) := F −1 [−|ξ|αF [u]] , α > 0, (1.3)

where F represents the Fourier transform, and F −1 denotes its inverse. If α = 2, the fractional Laplacian in (1.3) reduces
to the standard Laplace operator, but for α ∈ (0, 2), it is a nonlocal operator describing long-range interactions [11,3,15].

Similar to the standard (α = 2) NLS, the fractional NLS (1.1) has two important conserved quantities: the mass of the
wave function:

N(t) = ∥u(·, t)∥2
:=


Rd

|u(x, t)|2dx ≡ N(0), (1.4)

and the total energy (or Hamiltonian):

E(t) =


Rd


εαRe


u∗(x, t)(−∆)α/2u(x, t)


+

β

σ + 1
|u(x, t)|2(σ+1)


dx ≡ E(0), (1.5)

where Re(φ) and φ∗, respectively, represent the real part and the complex conjugate of a function φ. The fractional NLS is
time reversible, that is, (1.1) remains invariant if one replaces the time t by −t and takes its conjugate. These properties are
usually used as benchmarks to develop and examine numerical methods for the fractional NLS.

The fractional NLS (1.1) admits the plane wave solution of the form:

u(x, t) = A exp

i(λk · x − ωt)


, (1.6)

provided that the dispersion relation

ω = εα−1
|λk|

α
+
β

ε
|A|

2σ , (1.7)

is satisfied. Here, A is the amplitude of the plane wave solution, λk ∈ Rd is the vector of wave numbers, and ω is the time
frequency. It shows in [15] that due to its nonlocality, the stability and dynamics of the planewave solutions in the fractional
NLS are significantly different from those in the standard NLS. In numerical studies of plane wave dynamics, it is desirable
for a numerical method to preserve the dispersion relation in (1.7).

Both the nonlocality and nonlinearity of the fractional NLS make it extremely challenging to find its analytical solutions.
Therefore, numerical simulations play an important role in the study of the fractional NLS. However, in contrast to the
standard NLS, only a few numerical methods are available in the literature for solving the fractional NLS. For example,
a second-order finite difference method is proposed in [16,17], which is based on the fractional centered difference
discretization of the Riesz fractional derivatives. In [18], collocation methods are presented to solve the fractional linear
Schrödinger equation. Recently, a split-step Fourier spectral method is applied in [19] to study the decoherence of solitons
in the fractional Schrödinger equation, but the properties of this method are not discussed. In this paper, we aim to develop
accurate numericalmethods for solving the fractional NLS,which preserve one ormore analytical properties of the fractional
NLS, including mass conservation, energy conservation, time reversible, and dispersion relation. In addition, some remarks
are provided for numerical simulations of the fractional NLS.

The paper is organized as follows. In Section 2, we introduce three methods for solving the fractional NLS, and the
properties of these methods are analyzed in detail. Numerical examples are presented in Section 3 to examine and compare
the performance of our numerical methods in solving the fractional NLS. Some concluding remarks are made in Section 4.

2. Numerical methods

In this section, we introduce three Fourier spectral methods for solving the fractional NLS (1.1)–(1.2) and prove that all
of them are mass conservative in the discrete level. Some other properties, such as energy conservation, time reversible,
and dispersion relation, are also discussed for each method. For simplicity of notation, we will introduce our numerical
methods for the one-dimensional (i.e., d = 1) fractional NLS. The generalization of these methods to higher dimensions is
straightforward. First, we truncate (1.1)–(1.2) into a finite computational domain [−L, L]with periodic boundary conditions
and consider the following problem:

iε∂tu(x, t) = εα(−∆)α/2u(x, t)+ β|u(x, t)|2σu(x, t), t > 0, (2.1)

u(x, 0) = ψ(x), (2.2)

for x ∈ [−L, L]. We usually choose L to be sufficiently large, unless plane wave solutions are studied [15]. We will leave the
discussion of other boundary conditions for our future work.

Let τ > 0 denote a time step, and define the time sequence tn = nτ for n ≥ 0. Define the mesh size h = 2L/J , with J a
positive even integer. Denote spatial grid points xj = −L + jh, for 0 ≤ j ≤ J . Let un

j be the numerical approximation of the
solution u(xj, tn). Then, we denote the solution vector at time t = tn as Un

= (un
0, u

n
1, . . . , u

n
J−1)

T . Due to the definition of
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