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a b s t r a c t

We investigate an inverse source problem with an integral constraint for a parabolic
equation. The constraint is motivated by an application in thermochronology, a branch of
geology. The existence and uniqueness of weak solutions are established by means of the
Rothe method and an energy method, respectively. The elliptic problem resulting from the
time discretization is solved by homogenizing the integral constraint. The implicit scheme
used in the proof of existence lends itself readily for numerical studies and we present the
results of numerical experiments. We also report on the errors and convergence rates.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω be a domain in Rd with a C2 boundary ∂Ω . We consider an inverse source problem corresponding to the equation:

∂tu − ∆u = F(x, t) + f (t), x ∈ Ω, t > 0 (1)
u(x, t) = g(x, t), x ∈ ∂Ω, t > 0 (2)
u(x, 0) = u0(x), x ∈ Ω (3)

Ω

u(x, t) dx = µ(t), t > 0. (4)

The problem is as follows: given the known component F(x, t) of the source, the Dirichlet boundary conditions g(x, t), the
initial condition u0(x), and a scalar function µ(t), find the pair (u(x, t), f (t)) that satisfies (1)–(4). In this paper, our focus is
on the numerical scheme for solving this system. This scheme also allows us to prove existence via Rothe’s method.
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The problem of finding the solution of (1)–(4) with a non-linear source term and a constant in time integral constraint
was considered by Švadlenka and Omata in [1]. These authors addressed existence, regularity, and presented results of
numerical studies. The case of a non-constant integral constraint was developed by Ginder in [2] who proved existence and
regularity under the assumption that µ(t) ∈ C1

[0, T ]. In both [1,2], the method of discrete Morse flow, which we refer to
as Rothe’s method, was applied. Numerical results using finite difference schemes in two dimensions are presented in [3]
and an application of the boundary element method in one dimension is treated in [4]. An inverse parabolic source problem
in which the source depends on both time and space with a final overdetermination is treated by Cao, Gunzburger, and
Turner [5]. The authors used optimal control theory to prove exact controllability. Inverse problems of determining the
time-dependent conductivity coefficient in one dimension with integral overdetermination are discussed in [6,7]. A related
inverse source problem involving data in the form of an internal measurement is dealt with, for example, in [8,9]. The case
of a source that depends only on the space variable or only on the time variable for both elliptic and parabolic equations is
considered in [10]. An elliptic problem with an integral constraint is solved in [11].

This paper is organized as follows. In Section 2, we establish a link between the inverse source problem (1)–(4) and a
problem arising in geology. The reader interested only in the mathematical part of this paper may safely skip to Section 3,
where we solve a related elliptic problem with an integral constraint. In Section 4, we homogenize the initial and boundary
conditions in the parabolic problem, prove the uniqueness of weak solutions, and introduce a semi-discretization in time
based on the solution of the elliptic problem. In Section 5, we use the time discretization to obtain a bound on the unknown
source via eigenfunction expansions, which, in turn, allows us to prove existence using Rothe’s method. Finally, in Section 6,
we present the results of numerical studies and comment on the rate of convergence of the scheme.

2. Motivation

The problem originated in thermochronology, a branch of geology wherein the thermal history of minerals is evaluated
on the basis of the concentration of daughter isotopes that are susceptible to loss via diffusion at elevated temperature. The
thermal history is of considerable interest to studies of the crustal history due to the proxy relationship between temperature
and depth beneath Earth’s surface (ca. 30 °C/km in stable, continental regions). By constraining the temperature of geologic
samples as a function of time, we are able to reconstruct the various processes they have been subject to and to better
understand Earth history.

TheK–Ar datingmethod is based on the decay of radiogenic 40Kwith half-life 1.25Ga to stable 40Ar, and is among themost
widely used as potassium is abundantwithin rocks andminerals from a variety of crustal settings. As 40Ar is chemically inert,
it tends to be excluded frommanyminerals at the time of crystallization, and then to accumulate as a radiogenic product that
is unaffected by chemical processes but can migrate within crystals by thermally activated lattice diffusion. The 40Ar/39Ar
dating method is a variation of traditional K–Ar dating, in which samples are irradiated with fast neutrons in the core of a
nuclear reactor to produce 39Ar from 39K, the stable and most abundant potassium isotope, to serve as a proxy for 40K [12].
The 40Ar/39Ar dating method is extremely useful as it permits measurement of the parent–daughter ratio on single, small
quantities of samples; current laser sampling methods permit measurement of 40Ar/39Ar age at scales of tens of microns
within single crystals. The spatial distribution of 40Ar within crystals, and its concentration relative to the parent, presents
a record of the sample’s thermal history. The complete distribution of 40Ar/39Ar within crystals corresponds to the problem
of final overdetermination considered in [5,8,10].

To set up a model of argon diffusion, we think of a mica crystal as occupying a domain Ω ⊂ Rd, where d = 2 or 3. The
concentration of argon u(x, t) satisfies the following partial differential equation

∂tu − c(t) ∆u = s(t), x ∈ Ω, t > 0 (5)
u(x, 0) = u0(x), x ∈ Ω (6)

u(x, t) = 0, x ∈ ∂Ω. (7)

Here, the coefficient c(t) is a composition of a function D(·) with temperature T , which itself is a function of time, i.e.,
c(t) = D(T (t)); the dependence of D on T is given by the Arrhenius law

D(T ) = D0 e−E/RT , (8)

where the activation energy E, the gas constant R, and the frequency factor D0 are parameters; the source term has the form

s(t) = λK fAr e−λK t , (9)

where λK is the rate of radiogenic decay of 40K and fAr is the fraction of the parent isotope 40K decays that yield 40Ar.Without
loss of generality, the initial concentration of the parent isotope is scaled to one.

We perform a change of variables that transforms Eq. (5) with an unknown coefficient c(t) into Eq. (1) with unknown
source f (t). For a given function c(·), let y be the solution of the ordinary differential equation

c(y)ẏ = 1, y(0) = 0, (10)

and define v(x, t) = u(x, y(t)) so that u is a solution of (5) if and only if v is a solution of

∂tv − ∆v = f (t), x ∈ Ω, t > 0, (11)
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