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1. Introduction

Ice sheets such as Greenland and Antarctica and glaciers are massive ice forms formed from snow and layers of frozen
water that accumulate over long periods of time. They move very slowly, either descending from mountains or moving
outward from a center of accumulation. Several models have been suggested and theoretical and numerical analyses for
glacier and ice-sheet evolution had been studied; see, e.g., [ 1-8]. One such model is given by the nonlinear Stokes problem

(1.1)

-V (@ (Vu+vVu))+Vp=f ine
V-u=0 in £,

where u and p denote the velocity and pressure fields, respectively, and @ (u) denotes a velocity-dependent viscosity
coefficient whose exact form is given in Section 3. In [9,10], similar fluid equations with homogeneous Dirichlet boundary
condition are analyzed. However, at the ice-bedrock interface, ice flows of glaciers and ice sheets satisfy a Robin-type
condition; see [11]. In [2], the well-posedness of (1.1) was established for a particular form of boundary conditions of this
type. In [12], a Galerkin finite element method was used to determine approximations of solutions of (1.1). There, several
means to stabilize Galerkin finite element method were addressed (see also [13,14]) and enhancements that preserve the
stability of approximate solutions are discussed.
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In this paper, we also impose the Rayleigh friction boundary condition used in [ 12] at the ice-bedrock boundary but, for
discretization purposes, instead use a least-squares finite element method. The method is based on first recasting (1.1) into
an equivalent first-order system of partial differential equations an then simply minimizing their residuals in a least-squares
sense. This approach has been successfully used in many applications [ 15-19] due to its merits that include discrete linear
systems that are symmetric positive definite, circumvention of LBB-type stability conditions so that the use of equal-order
finite elements spaces for velocity and pressure approximations is allowed, least-squares functionals providing explicit
local a posteriori error measures, applicability to concurrent simulations of multiple physics, and so on. In particular, we
propose a minimization problem that involves a least-squares functional that is defined using somewhat non-standard
norms. The existence, uniqueness, and finite element approximations of solutions of the least-square problem are explored
and numerical test results are presented.

In Section 2, useful definitions, notations, and well-known theorems are reviewed. In Section 3, the nonlinear Stokes
equations with boundary conditions appropriate to the glaciology setting are introduced. In Section 4, an iterative method
based on a Picard-type linearization is presented as a means for solving the nonlinear problem. The linear problems faced at
eachiteration are then solved using a least-squares minimization problem, as presented in Section 5 where also the existence
and uniqueness of the corresponding minimizer is proved. In Section 6, finite element approximations are analyzed and then
illustrative numerical results are presented in Section 7.

2. Preliminaries

We review some useful definitions, notations, and well-known theorems and lemmas. Let £2 C RY, d = 2 or 3, denote
a bounded open connected domain with Lipschitz boundary I". The standard Sobolev spaces for functions defined on £2
and I" are denoted by H"(£2) and H"(I") with associated norms || - ||, and || - ||, respectively, where r is a real number.
Vector- and tensor-valued functions are written in bold characters. Inner products in L?(£2) and L?>(I") are denoted by (-, -)
and (-, -) -, respectively. For the sake of notational simplicity, subscripts for [>-norms are omitted, e.g., asin | - ||.

For I7 C I',let H{ (2) = {v € H'(22) | v = 0 on I}}; of course, H; (£2) corresponds to [} = I". Let Hf_l(.Q) denote the

dual space of Hf1 (£2) equipped with the norm

lul s, v}
u -1 - SUP )
H7 (@)
! veH} (2).v#0 vl
which, for notational simplicity, we simply refer to as || - || ;. Define

H(V) =f{ue (]| V- uel*(2)
which is a Hilbert space under the norm
1
lallyew,y = (ul? + 1V - af?)2.

Throughout this paper, c and C denote generic constants whose value may be different at different instances.
Several well-known theorems and lemmas are used in this paper. The proof of the first lemma follows along the lines of
that in [20,21] for [H] (£2)]°.

Lemma 2.1. Let 2 C R? denote a bounded connected domain with Lipschitz boundary and let V- denote the H'-orthogonal
complement of

Vi={p e [H ()] (V-9,0) =0forall; € *(2)}.
Then the mapping V- : V1 — [%(£2) is an isomorphism. Moreover, for any q € L*(£2), there exist a functionv € V+ C [Hfl )¢
and a constant c depending on §2 but not on v satisfying

V.v=gq and || =<clql.

The following generalized Korn inequality can be found in [22]. The second Korn inequality is a special case of the
generalized inequality [20].

Theorem 2.1 (Generalized Korn Inequality). Let £2 C R? denote a bounded Lipschitz domain and let u € [H'(£2)]°. Then there
exists a constant ¢ > 0 such that

lulls < ¢ (llull + | Va+ Vu'|).

Theorem 2.2 (Second Korn Inequality). Let §2 denote a bounded Lipschitz domain in RY and let u e [H'(£2)]% In addition,
suppose that u vanishes on some part of the boundary I that has positive (d — 1) dimensional measure. Then there exists a
positive constant c such that

laly <c|Va+vVd'|. (2.1)
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