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a b s t r a c t

We investigate a class of nonlinear evolution systems modeling time-dependent flows of
incompressible, viscous and heat-conducting fluidswith temperature dependent transport
coefficients in three-dimensional exterior-like domains. We prove a local existence
theorem for the fully coupled parabolic system with a source term involving the square
of the velocity gradient and a combination of Dirichlet and artificial boundary conditions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

LetΩ ⊂ R3 be a bounded domainwith a C1,1 boundary ∂Ω . Suppose thatΓD andΓN are closed disjoint two-dimensional
manifolds of classC1,1 such that ∂Ω = ΓD∪ΓN .ΓD represents solid surfaces andΓN denotes the artificial part of the boundary
∂Ω . Let T ∈ (0,∞) be fixed throughout the paper, I = (0, T ) andΩT = Ω × I , ΓDT = ΓD × I and ΓNT = ΓN × I . The strong
formulation of our problem reads as follows:

ϱ (ut + ∇ · (u ⊗ u))− ∇ · (ν(θ)D(u))+ ∇π = F(θ) inΩT , (1.1)
∇ · u = 0 inΩT , (1.2)
ϱcv (θt + u · ∇θ)− ∇ · (λ(θ)∇θ)− ν(θ)D(u) : D(u) = 0 inΩT , (1.3)

u = 0 on ΓDT , (1.4)
θ = θD on ΓDT , (1.5)
−πn + ν(θ)D(u)n = 0 on ΓNT , (1.6)
−λ(θ)∇θ · n = 0 on ΓNT , (1.7)
u(x, 0) = u0(x) inΩ, (1.8)
θ(x, 0) = θ0(x) inΩ. (1.9)
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Here we suppose that all functions u, θ, π, F , ν, λ, u0, θ0 and θD are smooth enough. System (1.1)–(1.9) represents a
thermodynamic model for unsteady flows of incompressible heat-conducting Newtonian fluids in exterior-like domainΩ .
Modeling of exterior flows past bodies in unbounded domains is not practical from computational point of view. Therefore,
the unbounded physical regions are usually truncated to smaller bounded domains by assuming an artificial boundary
ΓN . The Dirichlet boundary conditions (1.4)–(1.5) are prescribed on surfaces of bodies, while the Neumann-type boundary
conditions (1.6)–(1.7) are applied on the artificial part ΓN of the boundary ∂Ω . We refer the reader to [1–6] for discussion
and analysis of a number of artificial boundary conditions.

The unknowns in themodel are the velocityu, temperature θ and pressureπ . Throughout the paper,n and τ, respectively,
are an outer unit normal and tangential vectors, respectively, to ∂Ω and D(u) is the so-called rate-deformation tensor field
and denotes the symmetric part of ∇u (the rate of strain tensor) with components

Dij(u) =
1
2


∂ui

∂xj
+
∂uj

∂xi


.

Further, data of the problem are as follows: θD is a given function representing the distribution of the temperature θ on ΓDT ,
u0 and θ0 describe the initial velocity and temperature, respectively, and satisfy the compatibility conditions u0(x) = 0 and
θ0(x) = θD(x, 0) on ΓD.

The kinematic viscosity ν = ν(·), body force F = F(·) and thermal conductivity λ = λ(·) are bounded positive
continuous functions of temperature. Without any further reference, throughout we assume

0 < ν1 ≤ ν(ξ) ≤ ν2 < +∞ ∀ξ ∈ R (ν1, ν2 = const), (1.10)
0 < Fi(ξ) ≤ CF < +∞ ∀ξ ∈ R (CF = const), (1.11)
0 < λ1 ≤ λ(ξ) ≤ λ2 < +∞ ∀ξ ∈ R (λ1, λ2 = const). (1.12)

Positive constant material coefficients represent the density ϱ and the specific heat cv , which are in the sequel normalized
to 1.

The energy balance equation (1.3) takes into account the phenomena of the viscous energy dissipation, omitted
frequently in the Boussinesq model of heat-conducting fluids [7–11]. Eqs. (1.1)–(1.9) represent the system with strong
nonlinearities (quadratic growth of ∇u in the dissipative term ν(θ)D(u) : D(u)) without appropriate general existence
and regularity theory. In [12], Frehse presented an example of discontinuous bounded weak solution U ∈ L∞

∩ H1 of
nonlinear elliptic system of the type 1U = B(U ,∇U), where B is analytic and has quadratic growth in ∇U . However, for
scalar problems, such existence and regularity theory is well developed (cf. [13,14]). Nevertheless, the main (open) problem
of the system (1.1)–(1.9) consists in the fact that, because of the artificial boundary condition (1.6), we are not able to prove
an ‘‘a priori’’ estimate for the convective term∇ ·(u⊗u) in the system of the Navier–Stokes equations. Consequently, we are
not able to show that the kinetic energy of the fluid is controlled by the data of the problem and the solutions of (1.1)–(1.9)
need not satisfy the energy inequality. This is due to the fact that some uncontrolled ‘‘backward flow’’ can take place at the
artificial boundaryΓN of the truncated domainΩ and one is not able to prove global (in time) existence results by the energy
method as in the frequently used case of Dirichlet boundary condition on the whole boundary.

In [15], Kučera and Skalák proved the local-in-time existence and uniqueness of a ‘‘weak’’ solution of the evolution
Boussinesq approximations with constant viscosity and thermal conductivity of the heat-conducting incompressible fluids,
such that1

ut ∈ L2(0, T∗;V1,2
σ ,D), utt ∈ L2(0, T∗; (V1,2

σ ,D)
∗),

θt ∈ L2(0, T∗; V
1,2
D ), θtt ∈ L2(0, T∗; (V

1,2
D )∗), 0 < T ∗

≤ T ,

under some smoothness restrictions on u0, θ0 and the pressureπ . In [16], Beneš and Kučera proved the local weak solvability
results for a variational formulation of the appropriate steady problem (butwith a constant right-hand side F ) corresponding
to the system (1.1)–(1.9) in a three-dimensional open cylindrical channel. In [17], the author proved theW 2,p-regularity for
steady flows in two-dimensional Lipschitz domains.

Bulíček, Feireisl and Málek [18] considered a complete thermodynamic model for time dependent flows of incom-
pressible homogeneous Newtonian fluids with temperature dependent material coefficients in a fixed bounded three-
dimensional domain. The authors established the global weak and the so-called ‘‘suitable weak’’ (in addition, the entropy
inequality is required) solutions of the problemwith Navier-type boundary conditions for the velocity andNeumann bound-
ary conditions for temperature (zero heat flux across the boundary). The authors extended the results for suitable weak
solution, obtained by Leray [19] and Caffarelli, Kohn and Nirenberg [20], from a purely mechanical to a complete thermody-
namic model. The analysis of the same model in the spatially periodic setting is presented by Feireisl and Málek [21]. Here
the authors replaced the heat flow equation by the balance of total energy that has clear physical background. The resulting
system is supplemented with an ‘‘entropy inequality’’ as an extra admissibility condition. The authors proved long-time
and large-data existence of a weak solution to the problem describing three-dimensional unsteady flows of incompress-
ible fluids, where the viscosity and heat-conductivity coefficients depend on temperature. In [22], the author proved the

1 For definitions of corresponding function spaces see Section 2.
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