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a b s t r a c t

In this paper, the localized method of approximate particular solutions (LMAPS) using
radial basis functions (RBFs) has been simplified and applied to near-singular elliptic
problems in two- and three-dimensional spaces. The leave-one-out cross validation
(LOOCV) is used in LMAPS to search for a good shape parameter of multiquadric RBF.
The main advantage of the method is that a small number of neighboring nodes can be
chosen for each influence domain in the discretization to achieve high accuracy. This is
especially efficient for three-dimension problems. There is no need to apply adaptivity on
node distribution near the region containing spikes of the forcing terms. To examine the
performance and limitations of the method, we deliberately push the spike of the forcing
term to be extremely large and still obtain excellent results. LMAPS is far superior than the
compactly supported RBF (Chen et al. 2003) for such elliptic boundary value problems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

During the past two decades, radial basis functions (RBFs) have became an effective tool for not only surface interpolation
and data reconstruction but also for numerical partial differential equations (PDEs). The RBF collocation method was
first introduced by Kansa in 1990 [1]. Since then, RBFs have been widely used for solving various kinds of science and
engineering problems. Motivated by Kansa’s method, several modified versions of RBF collocation methods [2–5] have
been developed. Despite the effectiveness and simplicity of these methods, the resultant system of equations is often ill-
conditioned, especially when a large amount of collocation points is needed. The selection of the optimal shape parameter of
RBFs is also an outstanding research topic. The fundamental issue of the above problems is that the RBFs being used in these
methods are globally supported functions. The global RBFs are effective when the solution space of given PDEs is reasonably
smooth. On the contrary, when the solution space fluctuates rapidly or presents sharp spikes, the global methods generally
do not work well.

Traditional methods such as the finite element method and finite difference method are local methods. They are very
effective in dealing with the problems mentioned above. The idea of local collocation methods in the context of RBFs has
been introduced by Lee et al. [6] and Tolstykh and Shirobokov [7]. Instead of using all of the interpolation points as in the
global case, only data that falls in the influence domain of a given node is used for discretization of the PDE at the node. Based
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Fig. 1. The 7-point stencil of xp in three-dimensional space.

on a similar idea, the global version of the method of approximate particular solutions (MAPS) [2,5] has been extended to
the localized version (LMAPS) [8]. LMAPS is very effective for solving large-scale problems. As shown in [8], nearly one
million nodes have been used for solving Poisson problemswith excellent results. As expected, the selection of a good shape
parameter of MQ in LMAPS is much easier than the selection in the global MAPS.

In this paper, we will make improvements to the previous version of LMAPS, and apply it to various near-singular
problems in two- or three-dimensional space. A simplified formulation of the original LMAPS is introduced, where the
boundary conditions are merged into the governing equations in the discretization process. The leave one out cross
validation (LOOCV) [9,10]will be used to select good shape parameter inMQ. Due to the unique feature of the local approach,
LMAPS is capable to capture the rapid variation of the solution. Hence, LMAPS is especially attractive for solving near-singular
problems as shown in [11]. However, [11] used the smoothing scheme. The enhance nodes near the large spike of the forcing
term were needed. The difficulty of solving such near-singular problems becomes more pronounced when the spike of the
forcing term gets larger. As indicated in [11], the global methods using RBFs fail to produce acceptable accuracy for the near-
singular problems. Chen et al. [11] coupled the method of fundamental solutions with the compactly supported RBFs (CS-
RBFs). With the improved version of LMAPS shown in this paper, we are able to solve such near-singular problems without
the tedious adaptive effort mentioned in [11], especially we are able to solve three-dimensional problems on extremely
irregular domains.

The paper is organized as follows. In Section 2, we briefly extend LMAPS to three-dimensional space. This is a trivial
extension due to the radial nature of RBFs. In Section 3, we introduce the simplified formulation of LAMPS. This improved
the efficiency of the method. The particular solution of the MQ RBF for Laplace operator in 2D and 3D are given. In Section 4,
we also briefly explain LOOCV for selecting a good shapeparameter inMQRBFs. In Section 5, to demonstrate the effectiveness
of LMAPS for solving near-singular problems, we tested ourmethods on the following PDEs: two Poisson’s equations on unit
cube or irregular domains in 2D and 3D; and a modified Helmholtz problem on Stanford Bunny domain in 3D. In Section 6,
we make some comments and draw conclusions.

2. LMAPS

In this section, we give a brief review of LMAPS in three-dimensional space. Let L be a linear second-order elliptic partial
differential operator and B be a boundary operator. We consider the following boundary value problem

Lu(x) = f (x), x ∈ Ω, (1)
Bu(x) = g(x), x ∈ ∂Ω, (2)

where Ω ⊂ R2 or R3 is a bounded and closed two- or three-dimensional domain with a boundary ∂Ω . We assume that the
above boundary value problem has a unique solution for sufficiently smooth nonhomogeneous term f and boundary data g .

Let

xj
n
j=1 be the interpolation points inside the domain Ω . In this paper, the interpolation points are distributed

uniformly in the domain. For any point xp ∈ Ω , we create an influence domain Ωp, which contains a region formed by the
ns nearest neighboring interpolation points


xj
ns
j=1 to xp including xp. We usually choose five nearest neighboring points for

each node in 2D. For three-dimensional problems, we intend to selectmore neighboring points, about 7–25 points, than that
in two-dimensional domain for higher dimensional space. Figs. 1 and 2 show the seven and nineteen nearest neighboring
interpolation points of xp, respectively, in 3D.

By the method of particular solutions (MAPS) [2], u(xp) can be approximated by a linear combination of ns RBFs in the
following form:

u(xp) ≃ û(xp) =

ns
j=1

ajΦ
xp − xj

 , (3)
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