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a b s t r a c t

Flow forecasting in poorly gauged, flood-prone Ribb and Gumara sub-catchments of the Blue Nile was
studied with the aim of testing the performance of Quantitative Precipitation Forecasts (QPFs). Four types
of QPFs namely MM5 forecasts with a spatial resolution of 2 km; the Maximum, Mean and Minimum
members (MaxEPS, MeanEPS and MinEPS where EPS stands for Ensemble Prediction System) of the fixed,
low resolution (2.5 by 2.5 degrees) National Oceanic and Atmospheric Administration Global Forecast
System (NOAA GFS) ensemble forecasts were used. Both the MM5 and the EPS were not calibrated (bias
correction, downscaling (for EPS), etc.). In addition, zero forecasts assuming no rainfall in the coming
days, and monthly average forecasts assuming average monthly rainfall in the coming days, were used.
These rainfall forecasts were then used to drive the Hydrologic Engineering Center’s–Hydrologic Model-
ing System, HEC–HMS, hydrologic model for flow predictions. The results show that flow predictions
using MaxEPS and MM5 precipitation forecasts over-predicted the peak flow for most of the seven events
analyzed, whereas under-predicted peak flow was found using zero- and monthly average rainfall. The
comparison of observed and predicted flow hydrographs shows that MM5, MaxEPS and MeanEPS precip-
itation forecasts were able to capture the rainfall signal that caused peak flows. Flow predictions based on
MaxEPS and MeanEPS gave results that were quantitatively close to the observed flow for most events,
whereas flow predictions based on MM5 resulted in large overestimations for some events. In follow-
up research for this particular case study, calibration of the MM5 model will be performed. The overall
analysis shows that freely available atmospheric forecasting products can provide additional information
on upcoming rainfall and peak flow events in areas where only base-line forecasts such as no-rainfall or
climatology are available.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Flow forecasting involves the process of using observed and, if
required, forecasted rainfall over a catchment as input to a hydro-
logic model to determine the outflow at a given location. The qual-
ity of flow forecasts or flood forecasts depends to a high degree on
the quality of the rainfall input (Hapuarachi et al., 2011). This can
be achieved from continuous rainfall measurements on sub-daily
or hourly basis, from sufficient number of rainfall gauging stations
over the area of application. Unfortunately, this is not always the
case in many developing countries including Ethiopia, where such
an observation network is yet to be developed. For example, the
catchments discussed in this study are poorly gauged and in some

cases the daily time series data from the gauging stations may even
exhibit significant gaps. According to some Global Climate Models
(GCMs) there will be an increase in June-July–August (JJA) precip-
itation in east Africa (IPCC AR4 report, 2007). Therefore, with the
possible increase in risk of flooding in the Nile basin that comes
with the increase in precipitation, additional information sources
have to be found to support flow forecasting further to serve local
public with proper early warning systems.

Flow forecasts for 2 or 3 days are referred to as medium (or
short) term forecasts in flood early warning systems (Cloke and
Pappenberger, 2009). These forecasts can be obtained either by
channel routing or by simulating processes that transform rainfall
into runoff; the former being simpler than the later (Collischonn
et al., 2004). Nevertheless, forecasting based on rainfall runoff
transformation is essential whenever the required lead time is sig-
nificantly longer than the time taken to route flow along the river
channel (Lettenmaier and Wood, 1993).
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Estimate of future rainfall is always required in flow forecasting
when the forecast lead time is greater than the sum of the time of
concentration and time of flood propagation in a catchment (Collis-
chonn et al., 2004). The estimate of future precipitation during this
lead-time can be obtained by different techniques, for example, by
using Quantitative Precipitation Forecasts (QPFs) from Numerical
Weather Prediction (NWP) models. If no other information is avail-
able, assuming no further precipitation over the area (Zero fore-
casts) or monthly average rainfall for the coming days can be used.

NWP is based on computer models that simulate processes
affecting the weather in atmosphere, land surfaces and oceans
(Kimura, 2002). The forecasts from global NWP models can be fur-
ther downscaled to the local condition by feeding them as a bound-
ary condition to Limited Area Models (LAMs). These models are
able to account for local topography of the area and to produce
more accurate rainfall forecasts especially when local precipitation
is dependent on topographic features or orographic effects (Brown
et al., 2008).

The use of QPFs from NWPs to extend the lead time of flow fore-
casts has been applied in many studies (Collischonn et al., 2004,
2007; Rabuffetti et al., 2009). Using QPF rainfall forecasts in flow
prediction brings the uncertainities from NWP models into view.
One such source of uncertainity from NWP in predicting atmo-
spheric circulation is the high sensitivity to the initial conditions,
because of the non-linear characteristics of the governing equa-
tions (Kimura, 2002). In addition, for flow forecasting in poorly
gauged catchments, like those in this study, the availability of well
calibrated and validated hydrologic models will be limited, adding
further to the uncertainty of the results.

This study evaluates the performance of QPFs in the context of
flow forecasting of two poorly gauged catchments in Ethiopia
where the flow forecasting is ultimately intended to be used in
flood early warning. The performance of QPFs was analyzed indi-
rectly by comparison between observed and predicted flow hydro-
graphs. This is done for several observed peak flow events in the
study area.

1.1. Study area and data

The study area comprises the Ribb and Gumara catchments lo-
cated to the east of Lake Tana, upper Blue Nile, Ethiopia. The east-
ern part of Ribb and Gumara catchments is bordered by Farta
plateau that ranges from 2400 m to 4000 m as shown in Fig. 1.
The Ribb and Gumara rivers originate from these mountainous
areas and finally attain a gentle slope in the Fogera flood plains
near Lake Tana. The flood carrying capacity of the river reaches
being very small, results in the inundation of the Fogera flood plain
by Ribb and Gumara rivers during heavy rainfall.

The total catchment area of Ribb and Gumara Rivers is respec-
tively 1790 km2 and 1500 km2. The total length of Ribb river is
105 km and that of Gumara is 96 km. Gumara River has a higher
discharge with the average and maximum being 35 m3/s and
297 m3/s, respectively. The average and maximum flow in Ribb
River are 14 m3/s and 102 m3/s, respectively.

Daily rainfall and flow data of 2000–2006 was obtained from
gauging stations in and around the catchments. The data was lim-
ited to these years because in previous years, data series exhibits
significant gaps that mainly occur during the rainy season. In addi-
tion at the time of this study recent data from 2007 to 2010 was
not available from the Ethiopian Meteorological Agency. As indi-
cated by Fig. 1, the Ribb and Gumara are poorly gauged catchments
with very few rainfall and flow gauging stations. There are only
two rainfall gauging stations located in the Ribb catchment. As to
the Gumara catchment, it is literally ungauged with regards to
rainfall measurement. It was therefore necessary to use other

stations located near Ribb and Gumara catchments to estimate
the areal rainfall.

Gaps due to missing data are also very common in the data col-
lected from the gauging stations in this study. In practice closely
located stations can be used to fill the missing data in neighboring
stations. However, since in this study the missing data in most sta-
tions occur in overlapping periods, two different techniques were
applied to fulfill this purpose. First the correlation between the
rainfall gauging stations found inside and near the catchment
was compared with two other gauging stations (Bahir Dar and
Gonder) located further away from the catchments but with more
complete data set. This resulted in daily correlations ranging from
0.13 to 0.38 between Bahir Dar and Gonder and the study area
gauging stations. As a second alternative the correlation between
these stations and Tropical Rainfall Measuring Mission (TRMM)
datasets of 0.25 by 0.25 degree resolution from National Aeronau-
tics and Space Administration (NASA) was also analyzed. This gave
daily correlation values ranging from 0.36 to 0.41 between TRMM
and the study area gauging stations. Therefore TRMM datasets
were used to fill missing data. This was done by assigning values
from TRMM datasets for the corresponding days where data is
missing in the ground station rainfall time series.

1.2. Hydrologic model

The hydrologic model for the flow prediction was constructed
using the Hydrologic Engineering Center’s Hydrologic Modeling
System (HEC–HMS) developed by the US Army Corps of Engineers
(http://www.hec.usace.army.mil/software/hec-hms/). The model
was then calibrated and validated separately for Ribb and Gumara
catchments. Each of these two catchments was first divided into
three sub-basins by using Arc-GIS and HEC-GeoHMS (Geospatial
Hydrologic Modeling Extension). Both catchments were divided
into three sub-basins following the confluence points of major riv-
er branches of the Ribb and Gumara catchments as shown in Fig. 1.
Then initial estimates of hydrologic parameters were produced
using HEC-GeoHMS. The Soil Moisture Accounting (SMA) method
of HEC–HMS was used to describe the different processes that con-
vert the precipitation falling on the catchment into runoff. The rea-
son to choose SMA loss model is because it is suitable for
simulation of the long term (wet and dry periods) relationship be-
tween rainfall and runoff (Feldman, 2000). Due to lack of cross-sec-
tional and morphological data, the Clark unit hydrograph and the
Muskingum channel routing methods were used to describe the
runoff transformation and routing process. The linear reservoir
model was used to describe the base-flow component of the runoff.
This model has been suggested to be suitable to go together with
SMA loss model (Feldman, 2000). The Thiessen polygon method
was used to derive the gauge weights that convert the point rain-
fall from the gauging stations into areal rainfall.

The model was calibrated using data of 4 years from January 1,
2000 to December 31, 2003. The validation of the model made use
of another 2 years data from January 1, 2004 to December 31, 2005.
We were limited with these periods due to the observed data lim-
itation we had. Although these periods are short we have encoun-
tered works done with short calibration and validation periods that
gave acceptable results (Wallner et al., 2012). The calibration pro-
cedure followed automatic calibration proceeded by considerable
manual calibration. For the automatic calibration the Peak
Weighted Root Mean Squared Error (PWRMSE) and Volume Per-
cent Error (VPE) objective functions from HEC optimization man-
ager were used. To minimize these objective functions the
Univariate Gradient (UG) search algorithm of HEC–HMS was used.
In addition the Root Mean Squared Error (RMSE), Normalized RMSE
(NRMSE), Nash–Sutcliffe Coefficient (NSC) and Coefficient of deter-
mination (R2) were also used as external measures of performance.
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