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a b s t r a c t

On the background of our earlier results concerning the coexistence of infinitely many
periodic orbits, we present a new theorem dealing with a large class of one-dimensional
multivalued maps with monotone margins and connected values. If a nontrivial (n > 1)
n-orbit occurs then, according to our theorem, these maps possess a single-valued chaotic
selection, on a compact subinterval.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The main aim of this paper is to demonstrate that there exists a large class of one-dimensional multivalued maps
exhibiting chaos. These maps have a very strong forcing property. More concretely, if there exists a positive integer n > 1
such that they admit an n-orbit, then the coexistence of k-orbits occurs, for each k ∈ N. At the same time, there also exists a
single-valued continuous selection on a compact interval which is chaotic, practically in an arbitraryway. Roughly speaking,
‘‘period two implies chaos’’ here (whence the title). In fact, we will show that ‘‘any nontrivial period is equivalent with many
sorts of chaos’’, but this requires to be explained in more detail.

In order to understand these phenomena in a deeper way, let us start with a survey of similar results for single-valued
continuous functions. There are two classical results of this type, namely the Sharkovsky cycle coexistence theorem in [1]
and the one due to Li and Yorke saying that ‘‘period three implies chaos’’ in [2]. The Sharkovsky theorem is based on a new
(Sharkovsky) ordering of positive integers:

3 ◃ 5 ◃ 7 ◃ 9 ◃ · · · ◃ 2 · 3 ◃ 2 · 5 ◃ 2 · 7 ◃ 2 · 9 ◃ · · · ◃ 22
· 3 ◃ 22

· 5 ◃ 22
· 7 ◃ 22

· 9 ◃ · · · 2n
· 3 ◃ 2n

· 5 ◃ 2n
· 7 ◃

2n
· 9 ◃ · · · ◃ 2n ◃ · · · ◃ 22 ◃ 2 ◃ 1.

Theorem 1 (Sharkovsky’ 64). Let f :R → R be a continuous function. If there is some a ∈ R which forms a primary n-orbit O of
f , i.e.

O =

a, f (a), . . . , f n−1(a)

  
mutually different elements

, where f n(a) = a,

then for each k ▹ n (in the Sharkovsky ordering) there is, for some b ∈ R, also a primary k-orbit of f .

Remark 1. The special case of Theorem1, forn = 3,was obtainedmuch later, but independently, in [2]. This forcingproperty
is in principle one-dimensional, because the analogous criteria in Rn are very drastic, for n > 1 (cf. [3]).
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Theorem 2 (Li and Yorke, 1975). Let a continuous function f :R → R admit a primary 3-orbit. Then there exists an uncountable
subset S ⊂ R (called a scrambled set) with the following properties:
(i) lim supm→∞ | f m(x) − f m( y)| > 0, for all x, y ∈ S, x ≠ y,
(ii) lim infm→∞ | f m(x) − f m( y)| = 0, for all x, y ∈ S, x ≠ y.

Remark 2. The properties (i), (ii) holding on a scrambled set S ⊂ R are nowadays called chaos in the sense of Li–Yorke.

Theorem 2 was extended in [4,5] to ‘‘period ≠ 2n implies chaos’’. In [6], this implication was replaced by the equivalence,
but the chaos had this time a different meaning, namely that f has a positive topological entropy, i.e. h( f ) > 0. For its
definition, see e.g. [7]. This is still equivalent with the existence of a horseshoe of f k, for some k ≥ 1, i.e. with the existence
of an interval I ⊂ R and disjoint open subintervals K1 and K2 of I such that f k(K1) = f k(K2) = I , for some k ≥ 1, (cf. [7])
as well as with the topological transitivity of f , i.e. with the existence of nonempty open subsets U and V of R such that
f k(U) ∩ V ≠ 0, for some k ≥ 1. In fact, all the above equivalent properties coincide with the chaos in the sense of Devaney
(see e.g. [8]), because the sole transitivity implies, on intervals in R, that the set of periodic points of f is dense and that f has
a sensitive dependence on initial conditions. Moreover, ‘‘transitivity implies period 6’’ (cf. [9,10]). For the related definitions
and more details, see e.g. [11].

On the other hand, neither Theorem 1 nor Theorem 2 can be applied, via Poincaré’s translation operators, to scalar
ordinary differential equations. To be more precise, let us consider the scalar equation

x′
= f (t, x), (1)

where (for the sake of simplicity) f ∈ C(R2, R) satisfies the linear growth restrictions

| f (t, x)| ≤ α + β|x|, for all (t, x) ∈ R2,

and assume that

f (t, x) ≡ f (t + 1, x).

In view of Theorems 1 and 2, assume for a moment the unique solvability of (1). It is well-known (see e.g. [12, Theorem
9.1] that every bounded solution of (1) on the half-line is either 1-periodic or asymptotically 1-periodic which excludes the
existence of subharmonic k-periodic solutions, for any k > 1. Another, even more transparent argument, concerns just the
associated Poincaré translation operators Tn:R → R, n ∈ N, along the trajectories of (1), i.e.

Tn(x0) := {x(n, x0): x(·, x0) is a solution of (1), where x(0, x0) = x0}. (2)

Because of a unique solvability of (1), solutions of (1) depend continuously on initial conditions by which Tn becomes com-
pletely continuous. Moreover, Tn is still strictly increasing (otherwise, a contradiction with uniqueness), and subsequently
also homeomorphic. The monotonicity of Tn again excludes the existence of k-periodic points of Tn which determine in a
one-to-one way k-periodic solutions of (1), for any k > 1.

Since, in the lack of uniqueness, the Poincaré operators are obviouslymultivalued, thiswas for us a stimulation to consider
versions of Theorems 1 and 2 for multivalued maps, possibly applicable to differential equations and inclusions. Let us note
that, according to the result of Orlicz, ordinary differential equations are generically uniquely solvable.

2. Sharkovsky-type theorems for multivalued maps

Hence, consider now multivalued maps ϕ:R ( R (i.e. ϕ:R → 2R
\ {∅}).

Definition 1. By an orbit of kth-order (k-orbit) to a multivalued map ϕ:R ( R, we mean a sequence {xi}k−1
i=0 such that

(i) xi+1 ∈ ϕ(xi), i = 0, 1, . . . , k − 2,
(ii) x0 ∈ ϕ(xk−1),
(iii) this orbit is not a product orbit formed by going p-times around a shorter orbit ofmth-order, wheremp = k.

If still

(iv) xi ≠ xj, for i ≠ j; i, j = 0, 1, . . . , k − 1, then we speak about a primary orbit of kth-order (primary k-orbit).

Definition 2. A multivalued map ϕ:R ( R is upper semicontinuous (u.s.c.) if, for any open U ⊂ R, the small preimage
{x ∈ R:ϕ(x) ⊂ U} of ϕ is also open.

For the Poincaré operators Tn in (2), their upper semicontinuity (which is always the case) is equivalent to the closedness
of their graph ΓTn , where

ΓTn := {(x, y) ∈ R2: x ∈ R, y ∈ Tn(x)}.

Moreover, for every x ∈ R, the set of values {Tn(x)} of Tn consists either of a singleton or of a compact interval and Tm
n = Tnm,

m ∈ N. For more details, (see e.g. [13, Chapter III.4]).
For these maps, we were also able to prove the following theorem.
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