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a b s t r a c t

Stochastic differential equations (SDEs) have been used to model an asset price and its
volatility in finance. Lewis (2000) [10] developed the mean-reverting-theta processes
which can not only model the volatility but also the asset price. In this paper, we will
consider the following mean-reverting-theta stochastic volatility model

dX(t) = α1(µ1 − X(t))dt + σ1


V (t)X(t)θdw1(t),

dV (t) = α2(µ2 − V (t))dt + σ2V (t)βdw2(t).

We will first develop a technique to prove the non-negativity of solutions to the model.
We will then show that the EM numerical solutions will converge to the true solution in
probability.Wewill also show that the EM solutions can be used to compute some financial
quantities related to the SDE model including the option value, for example.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In general, the rate of the change of an asset price X(t) consists of random changes and deterministic changes. The well-
known Black–Scholes [1] model of the asset price is described by the linear SDE

dX(t) = α1X(t)dt + σ1X(t)dw1(t), (1.1)

where w1 is a scalar Brownian motion and the rate of return α1 and the volatility σ1 are assumed to be constants. Later,
Vasicek [2] developed the mean-reverting model and Cox, Ingersoll and Ross (CIR) [3] modified it into the mean-reverting
square root process which has the SDE form

dX(t) = α1(µ1 − X(t))dt + σ1


X(t)dw1(t). (1.2)

This SDE has beenwidely used tomodel the interest rates and volatility (see also [4,5]). Moreover, according to the empirical
studies, many authors have shown that the volatility is a stochastic process and it can be modelled by an SDE in many
situations (see e.g. [6,3,7–9]). In particular, Hull andWhite [8] observed that the instantaneous variance V = σ 2

1 is governed
by another Brownian motion w2 and can be described by the SDE

dV (t) = α2V (t)dt + σ2V (t)dw2(t), (1.3)
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where α2, σ2 are constants. Heston [7] proposed to model the variance by the mean reverting square root process

dV (t) = α2(µ2 − V (t))dt + σ2


V (t)dw2(t). (1.4)

Lewis [10] developed this into the more general mean-reverting-theta process

dV (t) = α2(µ2 − V (t))dt + σ2V (t)θdw2(t), (1.5)

which can not only model the volatility but also the asset price (see also [11,12]), where θ ≥ 1/2.
Accordingly, we will, in this paper, consider the following mean-reverting-theta stochastic volatility model

dX(t) = α1(µ1 − X(t))dt + σ1


V (t)X(t)θdw1(t),

dV (t) = α2(µ2 − V (t))dt + σ2V (t)βdw2(t).
(1.6)

This SDE model has no explicit solutions. Hence numerical techniques have become one of the most popular and powerful
tools to find the approximate solution (see [13–18]). In the case when 1/2 ≤ β, θ ≤ 1,the strong convergence (in L2) of
the Euler–Maruyama (EM) approximate solution has been established byMao et al. [19]. On the other hand, some empirical
studies show that the most successful continuous-time models of the short-term rate in capturing the dynamics are those
that allow the volatility of interest changes to be highly sensitive to the level of the rate. By χ2 tests to US T-bill data, the
above models which assume θ < 1 (or β < 1) are rejected and those which assume θ ≥ 1 (or β ≥ 1) are not rejected. For
example, applying the Generalized Method Moment, Chan et al. [11] give θ = 1.449. Using the same data, by the Gaussian
Estimation methods, Nowman [12] estimates θ = 1.361. Therefore, it is more evident to consider the SDEs with θ ≥ 1 and
β ≥ 1. However there is so far no result on the numerical solutions for the SDE model (1.6) when θ, β > 1. The aim of this
paper is to close this gap. We will show that the EM numerical solutions will converge to the true solution in probability.
We will also show that the EM solutions can be used to compute some financial quantities of the SDE model including the
option value, for example.

It is essential for the SDE model (1.6) to have its non-negative solution. Given that the SDE does not obey the linear
growth condition though it satisfies the local Lipschitz condition, there is so far no result on the non-negative solution. We
will therefore in Section 2 develop a technique to prove the non-negativity of the solution to themodel. In Section 3, wewill
define the EM approximate solutions to the volatility process V (t) and the underlying asset price process X(t). To guarantee
the non-negativity of the EM solutions, we will use the technique of stopping times. We will show that the EM numerical
solutions will converge to the true solution in probability. To demonstrate the practical use of the EM numerical method,
we will show in Section 4 that the EM solutions can be used to compute several important financial quantities of the SDE
model including the option value.

1.1. Notation

Throughout this paper, unless otherwise specified,wewill use the followingnotation. Let

Ω, F, {Ft}t≥0, P


be a complete

probability space with filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and right continuous while F0
contains all P-null sets). Let w1 and w2 be scalar Brownian motions defined on the probability space and w1 and w2 have
their correlation coefficient ρ. For a pair of real numbers a and b, we let a ∧ b = min{a, b}. For a set A, denote its indicator
function by 1A. We also set inf∅ = ∞ (as usual, ∅ denotes the empty set). Moreover, we let T be an arbitrary positive
number.

2. The non-negative solution

The SDE model (1.6) describes the asset price and its volatility in the financial market. It is therefore essential to prove
that the solution of (1.6) is non-negative with probability 1. The following lemmas in fact show that the solution is positive
with probability 1.

2.1. Non-negative V (t)

Lemma 2.1. Let β > 1. Then, for any given initial value V (0) = V0 > 0, the solution V (t) of the SDE model (1.6)will be positive
for all t ∈ [0, T ] almost surely.

Proof. Treat the second SDE in (1.6) as an SDE in thewhole real space R = (−∞, ∞) by setting its coefficients to be 0when
V (t) < 0. Clearly, the coefficients obey the local Lipschitz condition. Hence, there exists a unique maximal local solution
V (t) on t ∈ [0, ρe), where ρe is the explosion time (see e.g. [20]). For any sufficiently large positive number M , namely
1
M < V (0) < M , define a stopping time ρM = ρe ∧ inf


t ∈ [0, ρe) : |V (t)| ∉ [

1
M ,M]


and set ρ∞ = limM→∞ ρM .

Now, define a C2-function H : (0, ∞) → (0, ∞) by

H(V ) = V
1
2 − 1 −

1
2
ln V , V > 0.
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