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a b s t r a c t

Severely nonlinear problems can only be solved by some homotopy continuation method.
An example of a homotopy method is the continuous Newton method which, however,
must be discretized which leads to the damped step version of Newton’s method.

The standard Newton iteration method for solving systems of nonlinear equations
F(u) = 0 must be modified in order to get global convergence, i.e. convergence from any
initial point. The control of steplengths in the damped step Newton method can lead to
many small steps and slow convergence. Furthermore, the applicability of the method is
restricted in as much as it assumes a nonsingular and everywhere differentiable mapping
F(·) .

Classical continuation methods are surveyed. Then a newmethod in the form of a cou-
pled Newton and load increment method is presented and shown to have a global con-
vergence already from the start and second order of accuracy with respect to the load
increment step andwith less restrictive regularity assumptions than for the standard New-
ton method. The method is applied for an elastoplastic problem with hardening.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear problems arise in various contexts, such as for nonlinear boundary value problems. The variational formulation
of such a problem leads to a relation like: seek u ∈ U such that

a(u; u, v) = (f , v) holds for all v ∈ V , (1.1)

where a(.; u, v) is linear in u and v. A common example is a(u; u, v) =


Ω
k(u, ∇u)∇u · ∇v dΩ . Here U, V are Sobolev

spaces, such as U = V = H1(Ω), where Ω is the domain of definition.
The problem is usually discretized by restricting the variation to a finite element subspace Vh ⊂ V , wherewe seek u = uh

in a corresponding subspace Uh (where normally Uh = Vh) and h denotes some discretization parameter, such as a mesh
width. This is a Galerkin formulation of (1.1). It leads to a nonlinear algebraic equation,

F(u) = b, (1.2)

where F(u), u, b are n-dimensional vectors, if Vh is spanned by n linearly independent basis functions.
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The paper is concerned with the numerical solution of nonlinear equations of the form (1.2). To compute a solution one
can embed the problem in a continuous flow in the form of a differentiable solution path along some parameter (t), such as
the time variable in the evolutionary problem

du(t)
dt

= b − F(u(t)), t > 0 (1.3)

or, if F is differentiable,

d
dt

(F(u(t))) = b − F(u(t)), t > 0 (1.4)

with a given initial value u(0) = u0, and where one seeks the stationary solution, lim u(t), t → ∞. If F is differentiable
along the solution path, then (1.4) can be rewritten in the form,

F ′(u(t))
du
dt

= b − F(u(t)), t > 0, u(0) = u0. (1.5)

To solve (1.5) numerically, one can use the Euler forward time-stepping method, which leads to the sequence of equations

F ′(uk)(uk+1
− uk) = τ(b − F(uk)), (1.6)

where τ = τk = tk+1 − tk > 0 is the timestep and uk is the corresponding approximation of u(tk), k = 0, 1, . . . .
If τ < 1, this is the damped-step form of Newton’smethod to solve (1.2). As is well known, see e.g. [1–3] and Sections 2, 3

of this paper, in general a full timestep method with τ = 1, does not converge unless the initial value is sufficiently close to
the stationary solution. If it is sufficiently close, under certain conditions such as a Lipschitz continuous derivative F ′(·), the
method converges fast, namely superlinearly, often quadratically. To arrive at such a neighborhood of the solution one can
use a damped step version of the Newtonmethod as (1.6) at the first steps, with sufficiently small timesteps, but the control
of this may lead to very small timesteps and therefore slow convergence and be costly. Furthermore, convergence is still not
guaranteed because the Fréchet derivative F ′(u)may not exist globally or can be ill-conditioned and even indefinite causing
bifurcated paths, all of which may prevent convergence or, at least, make the computations at each step very expensive.

To overcome these problems we present an alternative to the stepsize control method, which is based on an increasing
load method, where the solution path is defined by

F(u(t)) = tb + (1 − t)F(u(0)), 0 < t ≤ 1, (1.7)

where u(0) is the solution of the ‘‘zero’’ load problem.
We assume that there is a unique solution to (1.7) for each t . Then we seek the solution to the full load case,

F(u(1)) = b.

In practice, we increment the load stepwise, so we solve

F(û(tk+1)) = tk+1b + (1 − tk+1)F(û(0)), k = 0, 1, . . . , (1.8)

where tk+1 = tk + τk and τk > 0 are the load increment steps. This equation must be approximated which can be done by
a sequence of Newton approximation steps. If just a single Newton step is used for each load case, this leads to a sequence
of discrete approximations uk, where

F ′(uk)(uk+1
− uk) = tk+1b + (1 − tk+1)b0 − F(uk), k = 0, 1, . . .

and where the solution u0
= û(0) to the zero load case is assumed to be given and b0 = F(u0).

The rational behind this method is that one gradually via better conditioned problems approaches the most difficult
problem, namely the full load case. Each problem for t < 1 might be solvable with much less computational cost than for
t = 1. Furthermore, as we shall see, one can readily construct a proper load step sequence without use of any adaptation.
For completeness we mention here another possible approach. For nonlinear boundary value problems the space mesh
parameter (h) is a natural continuation parameter. Here one solves first the nonlinear problemon a coarsemesh, interpolates
the solution to the fine mesh and computes the linearized problem there just once. Under certain conditions it can be
shown that the error in the corresponding approximate solution is of the same order as the discretization error on the fine
mesh. Hence, the nonlinear problem is solved to sufficient accuracy essentially by just one solution of a linearized problem.
However, in this paper we do not further discuss this method. For references see [4,5].

The remainder of the paper is composed as follows. In Section 2 we present a local convergence result for the classical
Newtonmethodwhere the linearized equations are solved to full accuracy. This enables direct error estimates in the L2-norm
of the error. However, in general it is not cost efficient to solve the linearized equations exactly.

Therefore, in Section 3 we present a method where they are solved approximately but to a controlled accuracy. In this
case, we can only show convergence of the residuals, but of the errors only indirectly and depending on the norm of the
inverse of the Fréchet derivative. We show also a result for the case where we have replaced the Fréchet derivative F ′(u), by
the derivative of an approximate mapping, K(u). This enables treatment of cases where F is not differentiable everywhere
or ill-conditioned, which typically occurs near the solution.
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