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a b s t r a c t

The paper presents a numerical procedure for solving a class of optimal control problems
for heterogeneous systems. The latter are described by parameterized systems of ordinary
differential equations, coupled by integrals along the parameter space. Such problems arise
in economics, demography, epidemiology, management of biological resources, etc. The
numerical procedure includes discretization and a gradient projection method for solving
the resulting discrete problem. A main point of the paper is the performed error analysis,
which is based on the property of metric regularity of the system of necessary optimality
conditions associated with the considered problem.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In principle, heterogeneous control systems, as described in [1], include age/size-structured systems, advection–reaction
systems, epidemiological models for heterogeneous populations, and a variety of economic models involving agents with
diverse individual features. In this paper we present a numerical approach for solving optimal control problems for such
systems, focusing on the following special class of heterogeneous systems:

ẋ(t, p) = f (p, x(t, p), y(t, p), u(t, p)), x(0, p) = x0(p), (1)

y(t, p) =


P
g(p, q, x(t, q), u(t, q)) dq. (2)

Here t ∈ [0, T ] is interpreted as time, ‘‘dot’’ means differentiation with respect to t , p is a scalar parameter taking values
in an interval P = [0, Π]. The state variables x : [0, T ] × P → Rn, y : [0, T ] × P → Rm, and the control variable
u : [0, T ] × P → U ⊂ Rr belong to functional spaces specified below in such a way that, together with appropriate
assumptions for the functions f : P × Rn

× Rm
× Rr

→ Rn and g : P × P × Rn
× Rr

→ Rm, Eqs. (1), (2) make sense for a
given initial condition x0.

We associate with system (1), (2) the following optimal control problem:

min
x,y,u


P
l(x(T , p))dp +

 T

0


P
L(p, x(t, p), y(t, p), u(t, p))dp dt


, (3)

u(t, p) ∈ U, (4)

where l and L are scalar functions, and U ⊂ Rr .
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Numerous particular optimal control models of the above type can be found in the literature (see e.g. [2,1,3] and the
bibliography therein), but the main applications we have in mind are in the dynamics of populations, where p is interpreted
either as a genotype projection or as some other individual-specific indicator. In these considerations x(t, ·) represents the
density of the (multi-dimensional) population along the heterogeneity space P , and y is an aggregated variable (coupling
Eqs. (1) and (2) together) that represents ‘‘externalities’’ influencing the dynamics.

System (1), (2) does not directly cover age-structured population systems that play a crucial role in population dynamics
and economics [4,5]. However,modifications of the subsequent considerations apply also to optimal control of such systems.
Modifications of the presented approximation scheme and the corresponding error analysis for more general systems (such
as size-structured systems or advection–reaction systems) are possible, but require additional non-straightforward work.

Wemention that an explicit dependence of the data on the time t is suppressed only for simplicity. Similarly, the function
g may depend on y in a sufficiently ‘‘regular’’ way (see [6, (A3)]). If a non-distributed control v : [0, T ] → V is involved in
the problem, then minor modifications are needed, as explained in Section 6.

The aim of this paper is to present a numerical procedure for solving optimal control problems of the type of (1)–(4). The
numerical procedure proposed below employs the Euler discretization scheme for approximation of Pontryagin’s type nec-
essary optimality conditions for the problem. The latter involve differential equations, integral relations, and an inclusion
(representing the condition of maximization of the Hamiltonian), that is, a system of generalized equations. A gradient pro-
jection technique is applied for solving this system of generalized equations. A main point of this paper is the error analysis,
which provides an error estimate based on a ‘‘metric regularity assumption’’ for the system of optimality conditions.

We mention that second order discretization schemes, rather than Euler’s one, are implemented in the software devel-
oped by the author and collaborators. The reason is explained in the discussions in Section 7. However, we base our expo-
sition on the Euler scheme due to: (i) better readability that allows to grasp the idea; (ii) to prove a second order accuracy
only on the assumption of metric regularity mentioned above is an open question.

The paper is organized as follows. In the next section we give a particular example from epidemiology. In Section 3
we present some preliminary material—assumptions, precise formulation of the problem, known optimality conditions.
Section 4 presents the numerical method based on discretization and a gradient projection procedure. Section 5 is devoted
to the error analysis. Some extensions and discussions are given in the two final sections.

2. An example from epidemiology

Models describing the spread of infectious diseases in heterogeneous populations are well known (see e.g. [2, Chap-
ter 6], [3]). The one below is a typical representative, where, however, a control is involved (interpreted as prevention), thus
an optimal control problem can be considered.

Below p ∈ [0, Π] =: P is a scalar parameter representing a trait related to the level of risk of infection of individu-
als having this trait (say, intensity of risky contacts, state of the immune system, personal hygiene, or a combination of
the above ones). The population has a fixed size and is divided into three groups: susceptible, infected, and recovered;
S(t, p), I(t, p), R(t, p), p ∈ P . Here S(t, ·) is the density of the susceptible individuals at time t , similarly for I and R. Thus
P S(t, p) dp is the size of the susceptible sub-population, etc. Moreover, a control u(t, p) ∈ [v, 1], v ∈ (0, 1), is involved,

interpreted as intensity of prevention applied to susceptible individuals of treat p. The dynamics of the disease is described
by the following system:

Ṡ(t, p) = −σ(p) u(t, p) J(t) S(t, p), S(0, p) = S0(p),
İ(t, p) = σ(p) u(t, p) J(t) S(t, p) − ρI(t, p), I(0, p) = I0(p),
Ṙ(t, p) = ρI(t, p), R(0, p) = R0(p),

J(t) =


P
α(p)I(t, p) dp,

where σ(p) combines the strength of the disease with the specific level of risk of individuals of treat p (without prevention),
ρ is the recovery rate, α(p) is the infectiousness of infected individuals of treat p. The prevention control reduces σ(p) to
σ(p)u(t, p). Since the population size is obviously constant, J(t) measures the infectiousness of the environment in which
the susceptibles live, thus σ(p)u(t, p)J(t) is the incidence rate if control u(t, p) is applied.

Notice that the natural non-negativity of S0(p), I0(p) and R0(p), together with u(t, p) ≥ 0, implies non-negativity of the
solution S(t, p), I(t, p) and R(t, p). The invariance of the domain {(S, I, R) : S ≥ 0, I ≥ 0, R ≥ 0} for any u(t, p) ≥ 0 can
be easily proved.

A reasonable objective function to be minimized is T

0


P
[βI(t, p) + c(p, u(t, p)) S(t, p)] dp dt,

where β the economic losses from one individual being infected in a unit of time, c(p, u) is the per capita expenditure of
applying control u to susceptibles of trait p. Typically c(p, u), u ∈ [v, 1] is strongly convex and decreasing, with c(p, 1) = 0
(no prevention effort).
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