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a b s t r a c t

In this workwe derive equivalence relations betweenmimetic finite difference schemes on
simplicial grids and modified Nédélec–Raviart–Thomas finite element methods for model
problems in H(curl) and H(div). This provides a simple and transparent way to analyze
suchmimetic finite difference discretizations using the well-known results from finite ele-
ment theory. The finite element framework that we develop is also crucial for the design of
efficient multigrid methods for mimetic finite difference discretizations, since it allows us
to use canonical inter-grid transfer operators arising from the finite element framework.
We provide special Local Fourier Analysis and numerical results to demonstrate the effi-
ciency of such multigrid methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We consider mimetic finite difference (MFD) methods for problems in H(curl) and H(div) with essential boundary con-
ditions. Such methods are designed in order to have natural discrete analogues of conservation (of mass, momentum, etc.),
symmetry and positivity of the operators. They are also structure preserving discretizations, namely, they form discrete
de Rham complexes.

Such discretization techniqueswere started in the School of A. A. Samarskii at theMoscow State University, and they have
been further developed and analyzed by Shashkov [1] and Vabishchevich [2]. Regarding theMFDmethods, our presentation
here follows Vabishchevich [2] and his Vector Analysis Grid Operators (VAGO) framework for dual simplicial/polyhedral
(Delaunay/Voronoi) grids.

Many authors have contributed to the research in this field, by applying the MFD methods successfully to several ap-
plications ranging from diffusion [3–5], magnetic diffusion and electromagnetics [6] to continuum mechanics [7] and gas
dynamics [8]. We refer to a recent comprehensive review paper by Lipnikov, Manzini, and Shashkov [9] and a recent book
by Beirão da Veiga, Lipnikov, and Manzini [10] on the subject for details and literature review.

We are interested in the MFD discretizations of two (standard) model problems in H(curl) and H(div). We show that
the MFDmethods can be fitted in a more or less standard finite element (FE) framework which leads to convergence results
and makes the design of efficient and fast solvers for the resulting linear systems quite easy. Our approach is somewhat like
special discrete Hodge operators and, therefore, is related to the generalized finite difference approach proposed by Bossavit
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(see e.g. [11] and references therein).We point out that, in the classical finite difference setting, convergence results exist, as
can be seen in [2], but deriving them is by allmeans not an easy task.Moreover,whilewe provide details on the constructions
in 2D, the equivalence between the MFDmethods and the FE methods carries over with trivial modifications to the 3D case
as well. We have only chosen 2D because it makes the exposition much easier to understand.

Such connections between the MFD schemes and the mixed FE methods for diffusion equations with Raviart–Thomas
elements have been already established, see [12–16] and references therein. In fact, designing finite element methods on
arbitrary grids is a hot topic and we refer to the recent works on agglomerated grids [17–19] and virtual finite element
methods [20–22].

Most of the existingworks are on approximation, stability and structure preserving properties of theMFDdiscretizations.
Developing fast solvers for the resulting linear systems is a topic that needs more attention, since the design of fast solvers
makes the MFD discretizations more practical and efficient. For FE methods, solvers can be built using the agglomeration
techniques introduced by Lashuk and Vassilevski [17,18]. Such techniques do not apply to the MFD discretizations (even on
simplicial grids!) and, to the best of our knowledge, such results are not available in the literature. We point out though that
on rectangular grids for standard finite difference schemes for H(div) problems, a distributive relaxation based multigrid
was proposed in [23].

As we have pointed out, our goal is to apply classical multigrid and subspace correction techniques [24–28] for the
mimetic discretizations, by first establishing the relation with Nédélec–Raviart–Thomas elements. Such approach automat-
ically makes efficient methods such as the ones developed by Arnold, Falk andWinther [29] and Hiptmair and Xu (HX) [30]
preconditioners applicable for the MFD methods.

Regarding the convergence of W - and V -cycle multigrid with a multiplicative Schwarz relaxation proposed in [29],
we complement the numerical results with practical Local Fourier Analysis (LFA) which provides sharp estimates of the
multigrid convergence rates. We use a variant of LFA that is applicable on simplicial grids (see [31]) and compare the
convergence rates predicted by LFA with the actual convergence rates ofW -cycle and V -cycle multigrid.

The rest of the paper is organized as follows. In Section 2, we describe the MFD schemes on simplicial grids. In Section 3
we derive the ‘‘modified’’ Nédélec–Raviart–Thomas FEmethods and show their equivalence to the VAGOMFD schemes. Sec-
tion 4 defines themultigrid components: smoothers, and,with the help of the results from Section 3, the canonical inter-grid
transfer operators. In this section, we also discuss the setup and the design of appropriate LFA for edge-based discretizations
and Schwarz smoothers. The results obtained from the LFA analysis are shown in Section 5, together with the convergence
rates of the resulting multigrid algorithm. Finally, conclusions are drawn in Section 6.

2. Mimetic finite difference discretizations on triangular grids

We consider the following two model problems for u in a two dimensional simply connected domain Ω:
curl rotu + κu = f, in Ω, (2.1)
−grad divu + κu = f, in Ω, (2.2)

with κ > 0 and subject to essential boundary conditions (vanishing tangential or normal components respectively). We
also use u and f to denote solutions and right hand sides for both problems without distinguish them in different equations
and spaces explicitly. The corresponding variational forms (used in the derivation of the FE scheme) are: find u ∈ H(curl)
and u ∈ H(div), respectively, such that

(rotu, rot v) + κ(u, v) = (f, v), for all v ∈ H(curl), (2.3)
(divu, div v) + κ(u, v) = (f, v), for all v ∈ H(div). (2.4)

In 3D we replace rot with a 3-dimensional curl. In the variational form, H(curl) and H(div), are the spaces of square
integrable vector valued functions which also have square integrable rot (curl in 3D) or div respectively. The functions
in the spaces H(curl) and H(div) are also assumed to satisfy the essential boundary conditions (u × n) = 0 for (2.3) and
(u · n) = 0 for (2.4) where n is the unit normal vector outward to ∂Ω .

2.1. Mimetic finite differences on a pair of dual meshes

We consider MFD schemes for (2.1) and (2.2) discretized on a pair of a primal (Delaunay) simplicial grid and a dual
(Voronoi) polyhedral grid. The vertices of the Delaunay triangulation are {xDi }

ND
i=1, and the vertices of its dual Voronoi mesh

are the circumcenters of the Delaunay triangles. We denote the Voronoi vertices by {xVk }
NV
k=1, and note that each such vertex

corresponds to a Delaunay triangle Dk, for k = 1, . . . ,NV . In Fig. 2.1 we have depicted a pair of dual meshes and marked the
Delaunay grid-points by squares and the Voronoi grid-points by circles. As is typical in the MFD schemes, we assume that
all triangles in the triangulation have only acute angles. This assumption guarantees that the Voronoi vertices will always
be in the interior of the Delaunay triangles. For 3D analogues of this assumption we refer to [2]. By duality, to a Delaunay
grid point xDi , there corresponds a Voronoi polygon Vi,

Vi = {x ∈ Ω | |x − xDi | ≤ |x − xDj |, j = 1, . . . ,ND, j ≠ i},
and we denote the Voronoi edge Vij = ∂Vi ∩ ∂Vj.



Download English Version:

https://daneshyari.com/en/article/472150

Download Persian Version:

https://daneshyari.com/article/472150

Daneshyari.com

https://daneshyari.com/en/article/472150
https://daneshyari.com/article/472150
https://daneshyari.com

