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a b s t r a c t

Piezomagnetic models, suitable for volcanological applications, can be readily calculated by numerical
surface integral methods, providing both savings in computational time and an ability to deal with arbi-
trarily shaped magnetoelastic media. Studies of piezomagnetic changes have traditionally used models
based on the Mogi model in which a spherical underground pressure source is included to represent a
magma chamber. We extended the Mogi model to include inclined column sources, as in the Walsh
and Decker model, and evaluated piezomagnetic changes for vertical, horizontal, and inclined columns.
Our analysis method considers any dependency of magnetic changes on the angle of column inclination.
This numerical approach allows for construction of piezomagnetic models that closely resemble actual
volcanic phenomena.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Crustal activity produces geomagnetic changes. The mecha-
nisms involved can result from stress or from geothermal and elec-
trokinetic activity. Stress-induced magnetism, also known as
piezomagnetism, is an important mechanism responsible for geo-
magnetic changes and is commonly associated with volcanic activ-
ity and earthquakes.

In early piezomagnetic models, converting changes in stress to
changes in magnetization was quite complicated, particularly in
evaluating the piezomagnetic effect. The results of laboratory
experiments (e.g., Kalashinikov and Kapitsa, 1952; Ohnaka and
Kinoshita, 1968) enabled Sasai (1983) to develop a relationship
linking stress to initial magnetization. This relationship, analogous
to Hooke’s law of elastic behavior, has been widely used in piezo-
magnetic modeling. Sasai (1983) referred to it as the ‘‘linear piezo-
magnetic effect.”

Piezomagnetic modeling can be applied to both earthquake and
volcanic activity. Piezomagnetism resulting from fault dislocation
is known as the seismomagnetic effect (Stacey, 1964), while that
resulting from volcanic activity is referred to as the volcanomag-
netic effect (Stacey et al., 1965). Both terms are contained within
the general concept of piezomagnetism.

Stacey (1964) introduced seismomagnetic modeling that em-
ployed a numerical volume element procedure, and several subse-
quent studies employed that method (e.g., Shamsi and Stacey,

1969; Talwani and Kovach, 1972; Hildenbrand, 1975; Zlotnicki
and Cornet, 1986). An alternative analytical approach was applied
in a series of papers by Sasai (e.g., Sasai, 1980, 1991b, 1994). Utsugi
et al. (2000) then presented an analytical expression for the piezo-
magnetic field generated by dislocation of inclined faults.

In volcanomagnetic modeling, Davis (1976) followed Stacey
et al. (1965) and derived a numerically computed model using a
simulated magma chamber. An analytical approach was preferred
by Sasai (1979) who applied the point source solution offered by
the so-called Mogi model (Mogi, 1958). This utilizes an inflated
or deflated pressure source within a semi-infinite magnetoelastic
medium. A discrepancy existed between Sasai’s (1979) and Davis’
(1976) results, and subsequently Suzuki and Oshiman (1990) re-
derived Davis’ (1976) Mogi model solution by means of a volume
element approach that varied the depth of the Curie point iso-
therm. Their result prompted Sasai (1991a) to revise his analytical
solution of the Mogi model.

Numerical approaches to piezomagnetic modeling have tradi-
tionally employed a volume element method or a volume integral
of the dipole forces existing within a magnetoelastic media. It is
also possible to use the surface integral approach introduced by
Sasai (1983). Such a surface integral formula as applied to a mag-
netoelastic media provides a ‘‘representation theorem” of piezo-
magnetism. Sakanaka et al. (1997) applied such a representation
theorem in numerical piezomagnetic calculations of a two-dimen-
sional magnetoelastic medium. Such numerical calculations save
computational times in comparison with the numerical volume
integral methodology.

Advantages of numerical approaches lie in their ready applica-
tion to practical problems. Numerical approaches can be applied
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to an arbitrarily shaped magnetoelastic medium in which magne-
tization is arbitrarily distributed. Sakanaka et al. (1997) derived the
volcanomagnetic solution for a two-dimensional Mogi model (the
‘‘Yukutake model” (Yukutake and Tachinaka, 1967)) that contained
jagged topography. In a three-dimensional case, Yamazaki and Sa-
kai (2006) evaluated the piezomagnetic field arising in a Mogi
model having a cone-shaped volcanic topography. Earlier, Oshiman
(1990) had used a two-dimensional model to describe the non-uni-
form distribution of initial magnetization arising from volcano-
magnetic effects.

2. Theory

This study describes examples of models of piezomagnetism
produced by volcanic phenomena using three-dimensional numer-
ical surface integral techniques introduced by Sakanaka (1998). To
deduce the piezomagnetic field, we must first establish the distri-
bution of the strain or stress changes within each geophysical sit-
uation (cf. the Mogi model). To do so, we could use the numerical
solutions calculated for the resulting strain field by either the finite
element method (FEM) or boundary element method (BEM). In this
study, however, analytical solutions of strain are used to describe
the piezomagnetic field.

Once the stress field has been determined, the numerical sur-
face integral approach based on the representation theorem is ap-
plied. The representation theorem denoting the piezomagnetic
scalar potential Wk(r) originated from the kth component of initial
magnetization Jk at a position r, outside of a magnetoelastic body in
the Cartesian coordinate (x1,x2,x3), is given as
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Eq. (1), following Sasai (1983), employs Gaussian CGS units.
The traditional Gaussian expressions are somewhat simpler to
use, especially when magnetization terms are included, than
are International System (SI) units. The potential Wk(r) with suf-
fix k originates from the kth component of the initial rock mag-
netization Jk. Primes on terms (e.g., r0; r0) represent the quantities
on the boundary surface of the body. q is a distance between a
point on the surface and the observation position. uk is the kth
component of the displacements, and r0ð¼ ðn01;n02;n03ÞÞ is an out-
ward normal vector on the surface. The partial derivative of dis-
placement corresponds to the strain component. DMk is a vector
of magnetization change originating from the kth component of
the initial magnetization, and DMkl is the lth component of
DMk�b is the stress sensitivity related to changes in magnetiza-
tion arising from the stress component. dkl is the Kronecker
delta.

To calculate the numerical surface element integral, the surface
of a magnetized body is discretized into triangular or rectangular
(trapezoidal) elements. If oukðr0Þ=on0;ukðr0Þ;DMk, and r0 in Eq. (1)
are assumed to be constant for one element, then the piezomag-
netic field, DHi(r), in the direction of the ith axis is
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The right-hand side of Eq. (2) contains the sum of the piezomag-
netic scalar potentials originating from three components of the
initial magnetization. The north component of the piezomagnetic
field DX, the east component DY, and the vertically downward
component DZ can be directly calculated using Eq. (2). The changes
in the geomagnetic total intensity DF are obtained by

DF ¼ DX cos D cos I þ DZ sin I: ð3Þ

where I is the inclination and D is the declination of the geomag-
netic field at an observation point.

3. Traditional volcanomagnetic models

The Mogi model commonly uses a simulated magma chamber
to analyze volcanological-induced effects, as shown in Fig. 1, with
changes in hydrostatic pressure assumed to occur within the
spherical body buried underground. Mogi (1958) evaluated the ef-
fects of crustal deformation, and other studies have calculated
changes in gravity (Hagiwara, 1977) and the magnetic field (Sasai,
1979, 1991a). The analytical solution of the relevant displacements
is given in Appendix A.

The two-dimensional version of the Mogi model, called the
‘‘Yukutake model,” was introduced by Yukutake and Tachinaka
(1967) to allow for numerical estimations of magnetic changes.
The Yukutake model assumes an infinitely long cylindrical pres-
sure source within a semi-infinite magnetoelastic medium. Solu-
tions of the Yukutake model have been given in detail by
Oshiman (1990) and Sakanaka et al. (1997).

Fig. 2 presents schematic diagrams of the discretized surface
using the numerical computations of the present study for both
the Mogi and Yukutake models. The surface of the magnetoelastic
medium consists principally of four parts: (1) the ground surface,
(2) the surface around the pressure source, (3) the side walls,
and (4) the Curie point isotherm. For simplicity, only the surface
around the pressure source is shown in Fig. 2; this coincides with
the outer surface of the demagnetized area due to high tempera-
ture. In the volcanomagnetic models used in this study, the ground
surface is flat, i.e., it lacks topography. The Curie point isotherm is
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Fig. 1. The coordinate system of the Mogi model. The center of a hydrostatically
pumped spherical source with radius a is located at the point (0,0, f). The
magnetized area occupies the region between the ground surface and the depth
of the Curie point isotherm, H, except for the interior of the source.
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