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a b s t r a c t

In our previous work we have studied the performance of a parallel algorithm, based on a
direction splitting approach, for solving of time dependent Stokes equation.Weused a rect-
angular uniform mesh, combined with a central difference scheme for the second deriva-
tives. Hence, the proposed algorithm required only solution of tridiagonal linear systems.

In our work, we are targeting massively parallel computers, as well as clusters of
multi-core nodes. The somehow slower (experimentally-established) performance of the
proposed approach was observed when using all cores on a single node of a cluster. To
remedy this problem, we tried to use LAPACK subroutines from the multi-threaded layer
library, but the parallel performance of the code (while improved) was still not satisfactory
on a single (multi-core) node.

Our current work considers hybrid parallelization based on the MPI and OpenMP stan-
dards. It ismotivated by the need tomaximize the parallel efficiency of our implementation
of the proposed algorithm. Essential improvements of the parallel algorithm are achieved
by introducing two levels of parallelism: (i) between-node parallelism based on the MPI
and (ii) inside-node parallelism based on the OpenMP. The implementation was tested on
Linux clusters with Intel processors and on the IBM supercomputer.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The solution of a tridiagonal system of linear equations lies at the heart of many programs developed for, so called,
scientific computations. With the development and availability of multitude of parallel and vector computers, parallel
algorithms (suitable for these machines) have appeared also for solving tridiagonal systems of equations.

Large tridiagonal systems of linear equations appear inmany numerical applications. For instance, in [1], they arise in line
relaxations needed by robust multigrid methods for structured grid problems. In [2] adaptive mesh refinement algorithm
was used for a coupled system of nonlinear evolution equations of a hyperbolic type and a parallel algorithm was used to
solve the tridiagonal systems of linear equations. The above papers used the classic parallel algorithm called the ‘‘partition
method’’ introduced in [3].
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On a serial computer, Gaussian elimination without pivoting can be used to solve a diagonally dominant tridiagonal
system of linear equations. This algorithm, first described in [4], is commonly referred to as the Thomas algorithm.
Unfortunately, this algorithm is not well suited for parallel computers. The first parallel algorithm for the solution of
tridiagonal systems was described in [5]. It is now usually referred to as cyclic reduction. Stone introduced his recursive
doubling algorithm in [6]. Both cyclic reduction and recursive doubling are designed for fine grained parallelism, where
each processor owns exactly one row of the tridiagonal matrix. Wang proposed a partitioning algorithm that was aimed
at more coarse-grained parallel computation, where the number of processors is many times smaller than the number of
unknowns [3]. Diagonal dominance of the resulting reduced system inWang’s methodwas established in [7] and numerical
stability ofWang’s algorithmwas analyzed in [8]. A unified approach for the derivation and analysis of partitioningmethods
applicable to solution of tridiagonal linear systems was given in [9,10]. There has also been attention directed towards a
parallel partitioning of the standard LU algorithm. Sun et al. [11] introduced the parallel partitioning LU algorithm that is
very similar to the Bondeli’s divide and conquer algorithm [12]. For both the partitioning algorithms and the divide and
conquer algorithms, a reduced tridiagonal system of interface equations must be solved. Here, each processor owns only a
small number of rows in this reduced system. As an example, in Wang’s partitioning algorithm, each processor owns one
row of the reduced system. In [13], this reduced system is solved by recursive doubling. However, numerical experiments
were performed only on a very small number of processors (typical for the times that this contribution was published).

Austin et al. [1] targeted parallel computers with thousands (to tens of thousands) of processors, such that for a 2D
structured grid, line solves spanning hundreds of processors are realistic. They represent a memory efficient partitioning
algorithm, for the solution of diagonally dominant tridiagonal linear systems of equations. This partitioning algorithm is
well suited for current distributed memory parallel computers.

2. Alternating directions algorithm for Stokes equation

We consider the time-dependent Stokes equations written in terms of velocity u and pressure p:
ut − ν1u + ∇p = f in Ω × (0, T )
∇ · u = 0 in Ω × (0, T )
u|∂Ω = 0, ∂np|∂Ω = 0 in (0, T )
u|t=0 = u0, p|t=0 = p0 in Ω,

(1)

where f is a smooth source term, ν is the kinematic viscosity, and u0 is a solenoidal initial velocity field, with a zero normal
trace. The time interval [0, T ] is discretized on a uniformmesh and τ is the time step.We solve the problem (1) in the domain
Ω = (0, 1)3, for t ∈ [0, 2] with Dirichlet boundary conditions.

Guermond and Minev [14,15] introduced a novel fractional time stepping technique for solving the incompressible
Navier–Stokes equations. This technique is based on a direction splitting strategy. They used a singular perturbation of
the Stokes equation. In this way, the standard Poisson problem in the projection schemes was replaced by series of one-
dimensional second-order boundary value problems.

Usage of central differences for the discretization in space, for the one-dimensional boundary value problems, leads to the
solution of tridiagonal linear systems. In our original researchwedevelopedMPI code based on an application of the partition
method for solving the tridiagonal systemof linear equations,which arise in the alternating directions algorithm [16,17]. The
analysis of experimental results showed that the algorithm is very well suited for distributed memory parallel computers
but it has unsatisfactory performance on a single (multi-core) node of a cluster. To try to alleviate this deficiency, we used
LAPACK subroutines fromamulti-threaded layer library, for the solution of tridiagonal linear systems [18]. The experimental
results showed that the code needs additional improvements. Here, one has to recall that to maximize performance of a
cluster of multi-core nodes, one has to, first, optimize the per-node performance.

In the current work, we have developed a hybrid-parallel code based on combination of the MPI and the OpenMP
standards. In our application of the partition method, each MPI process owns a small number of rows of the tridiagonal
matrix, but the linear system has multiple right hand sides. In our hybrid implementation, each OpenMP thread solves the
tridiagonal system with a small number of rows and a small number of right hand side (RHS) vectors. Specifically, let us
consider a discretization, in space, with nx, ny, and nz points in direction x, y, and z respectively. Then the one-dimensional
problem in the x direction leads to a linear system with nx rows and 3nynz RHS vectors for the ‘‘velocity update’’ step and
nynz vectors for the ‘‘penalty’’ step (in the alternating directions algorithm [15]). We use m = mxmymz MPI processes and
k OpenMP threads. In the ‘‘penalty’’ step, each MPI process computes the coefficients in nx

mx
rows and ny

my
nz
mz

RHS vectors. Let
us denote by M the number of rows and by K the number of RHS vectors owned by a single MPI process. In our current
implementation each OpenMP thread solves a linear system withM rows and K

k RHS vectors.

3. Experimental results

Let us now report on the experiments we have performed with the current implementation of the solver. In the
experiments, we consider the time-dependent Stokes equation (1). The discretization in timewas donewith time step 10−2.
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