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a b s t r a c t

The purpose of this paper is to apply a numerical technique namely the optimal homotopy
asymptotic method (OHAM) for finding the approximate solutions of a class of Volterra
integral equations with weakly singular kernels. This method uses simple computations
with quite acceptable approximate solutions, which has close agreement with exact
solutions. Illustrative examples are included to demonstrate the validity and applicability
of the present method and a comparison has been made with existing results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems of science and engineering lead to Volterra integral equations. The singular phenomenon which appears
during modeling of physical structures, is of considerable importance in mathematical physics and other branches of
sciences. The weakly singular Volterra integral equations with reproducing kernels represent such phenomena that have
significant applications in mathematical physics and chemical reactions including stereology, heat conduction with mixed
boundary conditions [1], crystal growth, electrochemistry, superfluidity and the radiation of heat from a semi-infinite
solid [2].

General form of weakly singular Volterra integral equations with reproducing kernel is [3]

u(x) −

 x

0

tµ−1

xµ
k(x, t)u(t)dt = f (x), x ∈ [0, X] (1)

where, f (x) is a given function, u(x) is a function to be determined and the smooth part of the kernel k(x, t) = 1 can arise
from diffusion problems with mixed boundary conditions. This type of equation has an infinite set of solutions, among
which only one particular solution is smooth and all others are singular at x = 0. It has been proved that Eq. (1) has a unique
solution in Cm

[0, X] if µ > 1, f ∈ Cm
[0, X], the second 0 < µ 6 1, f ∈ C1

[0, X] (with f (0) = 1 for µ = 1), Eq. (1) has an
infinite set of solutions in C[0, X], which contains only one particular solution belonging to C1

[0, X] [4].
Several efficient algorithms have been proposed by researchers for µ > 1. The popular methods contain the product

integration methods based on Newton Cotes [1], Hermite type collocation method [5], spline collocation method and
iterated collocation method [6,7], and the extrapolation algorithm [8]. But in recent years researchers have turned their
attention towards solving Volterra integral equations with 0 < µ 6 1 and have represented different methods [3,9–11].
Solutions of this class of equations have been a difficult topic to be analyzed and have receivedmuch previous investigation.
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Recently, numerical techniques for giving the approximate solutions based on reproductive kernel theory have been
introduced [12,13].

In this paper, we articulate the concept of OHAM tenders a reasonable, reliable solutions to weakly singular integral
equations based on reproductive kernels for both µ > 1 and 0 < µ 6 1. This technique was established by Marinca and
Herisanu [14]. The advantage of OHAM is: built in convergence criteria which are similar to HAM but more flexible. A series
of papers by Herisanu and Marinca [15] Marinca and Herisanu [16], Iqbal et al. [17] Iqbal and Javed [18] and Haq et al. [19]
have proved the effectiveness, generalization and reliability of this method and obtained solutions of currently important
application in science and engineering. In order to communicate the reliability of method, we deal with different examples
in the subsequent section. Finally, numerical comparison between OHAM and other existing methods shows the efficiency
of OHAM. Comparison graphs of exact solutions and approximate solutions are also plotted to visualize the performance of
OHAM. OHAM puts forward its soundness and potential for the solutions of mentioned problems in real life applications.

2. Basic formulation of OHAM

Consider the following differential equation:

L (u(x)) + f (x) + N (u(x)) = 0, B

u,

du
dx


= 0. (2)

where L is a linear operator, u(x) is an unknown function and f (x) is a known function, N(u(x)) is a non-linear operator and
B is boundary operator.

By means of OHAM one first constructs a family of equations [14]

(1 − p) [L(u(x, p)) + f (x)] = H(p) [L(u(x, p)) + f (x) + N(u(x, p))] , B

u(x, p),

∂u(x, p)
∂x


= 0. (3)

where p ∈ [0, 1] is an embedding parameter, H(p) is a non-zero auxiliary function for p ≠ 0 and H(0) = 0, u(x, p) is an
unknown function. Obviously, when p = 0 and p = 1 it holds

u(x, 0) = u0(x), u(x, 1) = u(x) (4)

respectively. Thus, as p increases from 0 to 1, the solution u(x, p) varies from u0(x) to the solution u(x), where u0(x) is
obtained from (2) for p = 0:

L (u0(x)) + f (x) = 0, B

u0,

du0

dx


= 0. (5)

We choose auxiliary function H(p) in the form

H(p) = pc1 + p2c2 + p3c3 + · · · . (6)

where c1, c2, . . . are constants, which can be determined later. Let us consider the solution of (3) in the form

u(x; p, ci) = u0(x) +


k>1

uk(x, ci)pk, i = 1, 2, . . . (7)

Now substituting Eq. (7) in Eq. (3) and equating the coefficients of like powers of p, we obtain the governing equations of
u0(x), given by Eq. (5), and the governing equations of uk(x), i.e.

L (u1(x)) = c1N0 (u0(x)) , B

u1,

du1

dx


= 0 (8)

L (uk(x) − uk−1(x)) = ckN0 (u0(x)) +

k−1
i=1

ci [L (uk−i(x)) + Nk−i (u0(x), u1(x), . . . , uk−1(x))]

B

uk,

duk

dx


= 0, k = 2, 3, . . .

(9)

where Nm (u0(x), u1(x), . . . , um(x)) is the coefficient of pm, obtained by expanding N (u(x; p, ci)) in series with respect to
the embedding parameter p:

N (u(x; p, ci)) = N0 (u0(x)) +


m>1

Nm (u0, u1, . . . , um) pm, i = 1, 2, . . . (10)

where u(x; p, ci) is given by Eq. (7).
It should be emphasized that uk for k > 0 are governed by the linear equations (5), (8) and (9) with the linear boundary

conditions that came from the original problem, which can be easily solved. The convergence of the series Eq. (7) depends
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