
Validation of matrix diffusion modeling

M. Voutilainen a,*, P. Kekäläinen a,1, A. Hautojärvi b,2, J. Timonen a,1

a Department of Physics, P.O. Box 35 (YFL), 40014, University of Jyväskylä, Finland
b Posiva Oy, Olkiluoto, 27160 Eurajoki, Finland

a r t i c l e i n f o

Article history:
Received 13 October 2009
Received in revised form 12 March 2010
Accepted 10 April 2010
Available online 18 April 2010

Keywords:
Matrix diffusion
Modeling
Radionuclide transport
Conductivity measurement

a b s t r a c t

Crystalline rock has been chosen as the host medium for repository of highly radioactive spent nuclear
fuel in Finland. Radionuclide transport takes place along water-carrying fractures, and matrix diffusion
has been indicated as an important retarding mechanism that affects the transport of mobile fission
and activation products. The model introduced here for matrix diffusion contains a flow channel facing
a porous matrix with stagnant water into which tracer molecules advected in the channel can diffuse.
In addition, the possibility of a finite depth of the matrix and an initial tracer distribution (‘contamina-
tion’) in the matrix are included in the model.

In order to validate the developed matrix diffusion model, a relatively simple measuring system was
constructed. Matrix diffusion was illustrated by observing the migration of 0.1 ml KCl pulses in the water
flowing through a channel facing a porous matrix made of synthetic fibre felt. Migration of K+ and Cl� ions
was monitored by measuring the electrical conductivity of the solution. The experimental system
allowed also measurements on the concentration profile inside the porous matrix, but the focus is here
on the input and output (breakthrough) pulses. Measurements were performed for two different initial
distributions of KCl tracer in the porous matrix. There was excellent agreement between modeling and
experimental results with consistent values for the diffusion coefficient used as the fitting parameter.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Matrix diffusion has received notable research interest over the
past three decades (e.g. Foster, 1975; Norton and Knapp, 1977;
Neretnieks, 1980; Wood et al., 1990; Guimera and Carrera, 2000).
This research has mainly focused on matrix diffusion in crystalline
and sedimentary rocks since many countries have decided or are
planning to build nuclear waste repositories in these kinds of for-
mation (e.g. Skagius and Neretnieks, 1986; Guimera and Carrera,
2000; Shapiro, 2001; Neretnieks, 2002). As man-made construc-
tions may eventually break, radioactive pollutants may get in con-
tact with groundwater. This would cause migration of nuclear
waste through soil, which may pose a threat to water resources
and nature. Therefore, estimation of the sphere of influence of nu-
clear waste is essential. Retardation processes caused by matrix
diffusion and sorption are believed to be significant in the migra-
tion of radionuclides in the geosphere.

The time perspective of the safety assessments of nuclear waste
repositories spans up to 250000 years including at least one glaci-
ation. At the moment there is an ongoing research and discussion
in Finland and Sweden on the influence of ice age on the safety of
nuclear waste repositories. In this work we have thus measured
and modeled a situation where fresh water is introduced to an ini-
tially contaminated matrix. This might be the case when an
upcoming ice age is drawing back and fresh melting water is get-
ting in touch with the repository system. Also, in many in situ
(Hodgkinson et al., 2009) and laboratory-scale (Hölttä et al.,
1992; Siitari-Kauppi et al., 1997) experiments it would be advante-
geous to use tracers which already exist in the environment or the
sample, especially when repeated influxes of tracers are used.

Usually matrix diffusion problems have been solved by numer-
ical methods (e.g. Chittaranjan et al., 1997; Hadermann and Heer,
1996; Kennedy and Lennox, 1995; Doughty, 1999), by random
walk methods (e.g. Painter et al., 2008; Delay et al., 2008) or by La-
place transforms (e.g. Tang et al., 1981; Cvetkovic et al., 1999).
These methods have typically been used in specific experimental
set-ups or for making modeling predictions. So far there have been
analytical solutions available for advection–diffusion systems only
in the simple situation of an infinite immobile zone (Neretnieks,
1980). Analytical or semi-analytical solutions for more generic sit-
uations which more often appear in real life are therefore called
for, as they can be more effectively applied in safety analysis or
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performance assessment. Furthermore, a common framework
allowing an efficient numerical implementation, which would also
allow for inclusion of many different phenomena that may occur,
would be advantageous.

To this end we consider in this work matrix diffusion of a non-
radioactive and inert tracer in the situation where the porous ma-
trix already contains a distribution of the tracer before a sharp
pulse of it is injected into the flow. We thus expect to see a break-
through curve which is a sum of two components. This problem is
a continuation to an earlier work of ours in which a generic frame-
work for matrix diffusion problems is discussed, but there a ‘clean’
matrix before introduction of a tracer pulse was only considered
(Kekäläinen et al., submitted for publication). Complexity of the
system is now increased so as to test the limits of the model
developed.

We provide a new semi-analytic solution to the advection–dif-
fusion equations in the case of a well mixed flow past a porous ma-
trix. Solution is based on a Laplace transform of the equation and
on using appropriate dimensionless variables. The main advantage
of the model is that arbitrary boundary and initial conditions can
be used so that it can better be used to model, e.g. in situ bedrock
experiments. It is evident that such experiments require well-de-
signed set-ups and carefully selected parameters in order to enable
detection of effects caused by matrix diffusion.

We also perform laboratory-scale experiments to validate the
modeling. A specific measuring system is constructed in which
the tracer concentration can be monitored in the flow channel
and in the porous matrix. This allows experiments in which the ini-
tial concentration of the tracer in the matrix can be reliably
controlled.

2. Mathematical model

The solution to a similar problem with a vanishing initial con-
centration of tracer in the porous matrix has been given in
(Kekäläinen et al., submitted for publication). Here we derive the
solution for a general initial concentration distribution, C0(x,z), in
the matrix.

2.1. Matrix of finite depth

Consider the case in which the matrix of porous medium
around a flow channel has a finite depth, Lz, in the z direction. If
we only consider advection of the tracer in the flow channel in
the x direction, and its transverse diffusion in the matrix, its con-
centration in the flow channel, C, and in the porous matrix, Cm,
are governed by the equations (Neretnieks, 1980)
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with the boundary and initial conditions, in the general case when
there is also an initial tracer distribution in the porous matrix,
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Here D is the diffusion constant of the tracer in the matrix, v the
flow velocity in the channel, C0 the initial tracer concentration in
the matrix, and C1 the input concentration of tracer into the chan-
nel. We are here interested in C at the end of the flow channel,
C(L, t), i.e. the breakthrough curve.

The diffusion equation for Cm(x,z, t) can be solved by separation
of variables, and the solution is a sum of two contributions,

Cm ¼ Cð1Þm þ Cð2Þm ð2:3Þ

such that
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The solution to these boundary value problems is given by
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Substituting Cm(x,z, t) into Eq. (2.1), we find a closed expression
for C,
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Introducing dimensionless variables,
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Eq. (2.8) can be expressed in the form
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with the initial and boundary conditions

Cðn;0Þ ¼ Fðn;0Þ; Cð0; sÞ ¼ f ðsÞ ð2:11Þ

Here we have used the dimensionless parameters
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and

Fðn; fÞ ¼ C0ðx; yÞ; f ðsÞ ¼ C1ðtÞ ð2:13Þ

Laplace transformation of Eq. (2.10) with respect to variable s
gives
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