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a b s t r a c t

Previous studies for determining the roughness coefficient are applicable to problems similar to the spe-
cific physical conditions under which the guidance is developed. The present study attempts to find a
general relationship between Manning’s n and velocity distribution and determines the roughness coef-
ficient based on the theoretical velocity distribution of natural channels. In this study, an equation is
developed for estimating Manning’s roughness coefficient using cross-sectional data and velocity obser-
vations without slope observations. The simple measurement of stream flow is usually made by taking
velocity measurement at several verticals at two-tenths and eight-tenths of the total channel depth.
These measurements, averaged to give the mean velocity in the vertical, can be used to estimate Man-
ning’s n. It provides an easy way to determine the roughness of streams using cross-sectional data and
velocity observations, and therefore eliminating the need for slope observations. It is concluded that this
equation for computing Manning’s n in natural channels gives stable results and satisfactory accuracy.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In applying the Manning formula, the greatest difficulty lies in
the estimation of Manning’s roughness coefficient n as there is
no exact method for determining it. At the present stage of knowl-
edge, four general approaches are taken for selecting the n value:
(1) consulting tables or photographs of channel reaches of typical
n values which can be used to estimate n for a different reach with
recognizably similar characteristics (Chow, 1959; Barnes, 1967;
Limetinos, 1970); (2) measuring friction slopes, discharges and
some cross-sections which is both time consuming and expensive;
(3) adopting empirical formulas to estimate the values of rough-
ness based on the particle size distribution curve of surface bed
material (French, 1985; Henderson, 1966); or (4) adopting empir-
ical formulas to estimate the values of roughness based on friction
slope or water surface slope (Riggs, 1976; Bray, 1979; Dingman
and Sharma, 1997). However each of these contributions is only
applicable to problems similar to the specific physical conditions
under which the guidance is developed and even then their accu-
racy is still questionable.

Although discharges are measured at one cross-section when
the hydraulic method is applied, one still cannot directly calculate
the roughness value if the slope is unknown. When the water sur-

face slope, the energy slope and the slope of the channel bottom do
not parallel, the computation of roughness by the Manning formula
is not appropriate even after the water surface slope is obtained.
However, a simple method to measure stream flow is to measure
velocity at several verticals at two-tenths and eight-tenths of the
total depth. These measurements, averaged to give the mean veloc-
ity of the vertical, can be used to estimate Manning’s n for a wide
rough channel utilizing logarithmic velocity distribution. Chow
(1959), and French (1985) applied this method to wide rough
channels. Nguyen and Fenton (2004) applied this method to three
rivers in Victoria and presented a sensitivity analysis. In this paper,
the two-point velocity method is verified and extended to four nat-
ural mountain streams using mean depth and averaged velocity to
estimate the value of the roughness coefficient.

2. Velocity distribution in turbulent flow

In a uniform flow the tractive force is apparently equal to the
effective component of the gravity force acting on the body of
water, parallel to the channel bottom and equal to wALS, where
w is the unit weight of water, A is the wetted area, L is the length
of the channel reach, and S is the slope. Thus, the average value of
the tractive force per unit wetted area, or the so-called unit tractive
force s0, is equal to wALS/PL = wRS, where P is the wetted perimeter
and R is the hydraulic radius that is

s0 ¼ wRS ð1Þ
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In a wide open channel, the hydraulic radius is equal to the
depth of flow y; hence s0 = wyS.

The velocity distribution in a uniform channel flow becomes
stable after the turbulent boundary layer has fully developed. In
the turbulent boundary layer, the distribution can be shown to
be approximately logarithmic.

The shearing stress at any point in a turbulent flow moving over
a solid surface has been given by Prandtl as

s ¼ ql2 dv
dy

� �2

ð2Þ

In which q, mass density, w/g, where w is the unit weight of the
fluid and g is the gravitational acceleration; l, a characteristic length
known as the mixing length; and dv/dy, velocity gradient at a nor-
mal distance y from the solid surface.

For the region near the solid surface, Prandtl introduced two
assumptions: (1) that the mixing length is proportional to y, and
(2) that the shearing stress is constant. Since the shearing stress
at the channel surface is equal to the unit tractive force, the second
assumption gives s = s0. From these two assumptions, Eq. (2) may
be written

dv ¼ 1
k

ffiffiffiffiffi
s0

q

r
dy
y

ð3Þ

in which k is the von Karman coefficient. The value of k here is
determined by Nikuradse’s experiments to be about 0.40. Integrat-
ing Eq. (3),

v ¼ 5:75
ffiffiffiffiffi
s0

q

r
log

y
y0

ð4Þ

in which y0 is a constant of integration.
From Eq. (1) and w = qg, it can be shown that

ffiffiffiffiffi
s0

q

r
¼

ffiffiffiffiffiffiffiffi
gRS

p
¼ Vf ð5Þ

The quantity represented by Vf has the dimension of a velocity.
Since it varies with the boundary friction s0, it is known as the fric-
tion velocity or shear velocity. Thus, Eq. (4) may be written

v ¼ 2:5Vf ln
y
y0

ð6Þ

This equation indicates that the velocity in the turbulent region
is a logarithmic function of the distance y. It is commonly known as
the Prandtl–von Karman universal-velocity-distribution law.

3. Theoretical uniform equations

By the continuity equation, the total discharge through an or-
dinary channel section (Fig. 1) may be written

Q ¼ AV ¼
Z y¼h

d0¼0
vdA ¼

Z h

0
vBdy ð7Þ

where h is the depth of water, A is the water area, B is the length of
the curve of equal velocity, and y is the vertical depth measured
from the boundary to the curve of equal velocity. Since the laminar
sublayer is relatively very thin, d0 can be assumed to be zero. It is
further assumed that the maximum velocity is at the free surface
and that the length B is proportional to its vertical distance y from
the boundary that is

B ¼ P � cy ð8Þ

where P is the wetted perimeter and c is a function depending on
the shape of the section. Thus, the water area is equal to

A ¼
Z h

0
Bdy ¼ Ph� c

2
h2 ð9Þ

Substituting in Eq. (7) the value of v from Eq. (6), B from Eq. (8),
and A from Eq. (9) and then integrating and simplifying, the follow-
ing equation is obtained:

V ¼ Vf 5:75 log
h

mR
exp �1� ch2

4A

 !" #
þ 5:75 log

mR
y0

( )
ð10Þ

In the above equation the quantity represented by the first term
on the right-hand side is a function of the shape of the channel sec-
tion. However, the variation of this quantity with different shapes
of the section is relatively small. For the sake of simplicity, the
quantity may be represented by an over-all constant A0. This con-
stant includes not only the shape function but also other uncertain
factors such as the effect of free surface and the effect of nonuni-
form distribution of the tractive force at the boundary. Accordingly,
Eq. (10) may be written

Nomenclature

n Manning’s roughness coefficient
V cross-sectional average velocity of the flow
R hydraulic radius
S energy slope
g gravitational acceleration
w unit weight of water
A wetted area
L length of the channel reach
s0 unit tractive force
P wetted perimeter
q mass density
l characteristic length known as the mixing length
dv/dy velocity gradient at a normal distance y from the solid

surface

k constant of proportionality between l and y
y0 constant of integration
Vf friction velocity or shear velocity
h depth of water
B length of the curve of equal velocity
y vertical depth measured from the boundary to the curve

of equal velocity
c function depending on the shape of the section
v0.2 velocity at two-tenths the depth
v0.8 velocity at eight-tenths the depth
ku v0.2/v0.8

C Chezy’s C

Fig. 1. Channel section to illustrate notation.
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