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a b s t r a c t

We deduce a particular case of the population cross-diffusion model introduced by
Shigesada et al. (1979) [1] by using the ideas of mutation and splitting from a single
species, as described by Sánchez-Palencia for ODE’s systems Sánchez-Palencia (2011) [21].
The resulting equations of the PDE system only differ in the cross-diffusion terms, the
corresponding diffusionmatrix being self-diffusion dominated, which implies that thewell
known population segregation patterns of the Shigesada et al. model do not appear in
this case. We prove existence and uniqueness of solutions of the PDE system and use a
finite element approximation to discuss, numerically, stability properties of solutions with
respect to the parameters in comparison with related models.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In [1], Shigesada et al. introduced the following time evolution drift-cross diffusion systemof partial differential equations
to model the interaction between two competitive species:

∂tui − div Ji = fi(u1, u2) in QT = Ω × (0, T ), (1)

for i = 1, 2, in QT =, where Ω ⊂ RN is an open and bounded set with Lipschitz boundary, ∂Ω , T > 0 is arbitrarily fixed,
the unknowns ui represent population densities, the flow is given by

Ji = ∇(ciui + ai1uiu1 + ai2uiu2) + diuiq, (2)

fi are competition Lotka–Volterra type functions,

fi(u1, u2) = (αi − βi1u1 − βi2u2)ui, αi, βij ≥ 0 i, j = 1, 2, (3)

and the field q is usually given as q = ∇Φ , with Φ an environmental potential, modeling areas where the environmental
conditions are more or less favorable [1,2]. The above system of equations is completed with non-flux boundary conditions
and non-negative initial data:

Ji · ν = 0 on ∂Ω × (0, T ), (4)

u(·, 0) = u0
i ≥ 0 on Ω, (5)

for i = 1, 2, where ν denotes the exterior unit normal to Ω .
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This model has received much attention since its introduction due to the interesting spatial pattern formation of its
solutions, referred to as segregation, and in fact an intense effort has been devoted to the understanding of its mathematical
properties, specially to the existence of solutions, see [3–6] for first results under restrictions on the coefficients, mainly
condition (6) below, [7,8] for general existence results, [9,10] for the study of the stationary problem, and [11,12] for
extensions to several populations and non-homogeneous Lotka–Volterra terms. The numerical approach to the problem
has been treated in [13–15], and the search for exact solutions in [16]. Related models have been studied in [17–20] and
others. However, it seems that themodeling itself has not been the object of further study, and littlemore than the somehow
ad hoc formulation given by Shigesada et al. in their key work [1] is available. In this article, we propose a derivation of the
model in terms of a well known mechanism of population differentiation, see Sánchez-Palencia [21]. Starting with a single
species with density u, a solution of certain evolution drift-diffusion PDE, we assume that mutation differentiates this single
species into two sub-species with densities u1 and u2, which split in their behaviors such that we still have that u1 + u2 = u
satisfies the original problem, but u1 and u2 solve slightly different PDE’s conforming a systemwhich is a special case of the
Shigesada et al. model.

As showed by Sánchez-Palencia [21], the strategy of differentiation and splitting in the ODE’s model leads to a situation
in which there exists a full segment of steady state solutions which includes the cases of coexistence and extinction of one
population. The interesting biological feature of themodel is that, in general, small perturbations of the Lotka–Volterra terms
involving advantages anddisadvantages for both populations tend to induce coexistence. Therefore, differentiation–splitting
strategies may be understood as mechanisms which promote diversity, rather than optimization of species. However, in
general, this does not seem to be the case when cross-diffusion spatial effects of the Shigesada et al. type enter in the
modeling, as we numerically demonstrate in Section 4. On the contrary, the effects of population pressure in the context of
differentiation–splitting strategies seem to promote only the survival of the best fitted.

With respect to the segregation pattern formation of the Shigesada et al. model, let usmention that they are not expected
to arise in our differentiation–splitting model since this mechanism leads to a self-diffusion dominated diffusion matrix. As
pointed out by Lou and Ni [9,10] in the context of the stationary problem corresponding to problem (1)–(5), while cross-
diffusion helps to create segregation patterns, these patterns do not appear if the intensity of diffusion or self-diffusion is
relatively large. Heuristically, we may have an idea of the relative size of diffusion parameters not leading to segregation
patterns when considering the diffusion matrix of the system,

A(u1, u2) =


c1 + 2a11u1 + a12u2 a12u1

a21u2 c2 + 2a22u2 + a21u1


,

and observing that under the condition

8a11 ≥ a12, 8a22 ≥ a21, (6)

the diffusion matrix is positive definite

ξ TA(u1, u2)ξ ≥ min {c1, c2} |ξ |
2 for all ξ ∈ RN ,

hence yielding a uniform elliptic operator. Therefore, no segregation patterns are expected if condition (6) holds, as is the
case for the differentiation–segregation model we shall deduce in Section 2.

The article is organized as follows. In Section 2 we introduce our model and comment on other related models. In
Section 3, we state and prove the main analytical results of this article. Finally, in Section 4, we use a finite element
approximation to compute several model examples and discuss on the stability of solutions with respect to the parameters
of the model.

2. Mathematical model

We start considering the dynamics of one single species population satisfying
∂tu − div J(u) = F(u) in Ω × (0, T ),
J(u) · ν = 0 on ∂Ω × (0, T ),
u(·, 0) = u0 ≥ 0 on Ω,

(7)

where the flow J is given by

J(u) = ∇(cu + au2) + duq,

with a, c ≥ 0 and d ∈ R, and where the Lotka–Volterra function is of competitive type

F(u) = u(α − βu).

Here, α ≥ 0 is the intrinsic growth parameter and β ≥ 0 is related to the carrying capacity of the ecosystem. In the
homogeneous space case, i.e., when the PDE of problem (7) reduces to an ODE, the nonlinear term of the Lotka–Volterra
function prevents the solution from unbounded increase. From the modeling point of view, observe that the flow J includes
terms analogous to those of Ji given in (1). From the analytic point of view, the existence and uniqueness of solutions of
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