Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Precise asymptotics for the linear processes generated by associated random variables in Hilbert spaces $^{*,\pm\pm}$

Ke-Ang Fu^{a,*}, Jie Li^b, Ya-Juan Dong^a, Hui Zhou^c

^a School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China

^b School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018, China

^c College of Economics, Hangzhou Dianzi University, Hangzhou 310018, China

ARTICLE INFO

Article history: Received 6 August 2010 Received in revised form 12 November 2011 Accepted 15 March 2012

Keywords: Association Bounded operator Convergence rates Hilbert space Linear processes

ABSTRACT

Let $\{\varepsilon_k, k \in \mathbf{Z}\}$ be a strictly stationary associated sequence of random variables taking values in a real separable Hilbert space, and $\{a_k; k \in \mathbf{Z}\}$ be a sequence of bounded linear operators. For a linear process $X_k = \sum_{i=-\infty}^{\infty} a_i(\varepsilon_{k-i})$, the precise probability and moment convergence rates of $\sum_{i=1}^{n} X_i$ in some limit theorems are discussed.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Let **H** be a separable real Hilbert space with the norm $\|\cdot\|$ generated by an inner product, $\langle \cdot, \cdot \rangle_H$ and let $\{e_i; i \ge 1\}$ be an orthonormal basis in **H**. Let $L(\mathbf{H})$ be the class of bounded linear operators from **H** to **H** and denote by $\|\cdot\|_{L(\mathbf{H})}$ its usual uniform norm. Let $\{\varepsilon_k, k \in \mathbf{Z}\}$ be a sequence of **H**-valued random variables, and $\{a_k, k \in \mathbf{Z}\}$ be a sequence of operators, $a_k \in L(\mathbf{H})$. Define the stationary Hilbert space process by

$$X_k = \sum_{i=-\infty}^{\infty} a_i(\varepsilon_{k-i}), \quad k \in \mathbf{Z},$$
(1.1)

provided the series is convergent in some sense. The sequence $\{X_k, k \in \mathbb{Z}\}$ is a natural extension of the multivariate linear processes [1]. These types of processes with values in functional spaces also facilitate the study of estimation and forecasting problems for several classes of continuous time processes, and one can refer [2] for more details.

It is noted that when { ε_k , $k \in \mathbb{Z}$ } is a strong **H**-white noise (i.e. a sequence of i.i.d. **H**-valued random variables such that $0 < \mathbb{E} \|\varepsilon_k\|^2 < \infty$ and $\mathbb{E}\varepsilon_k = 0$), the series in (1.1) converges almost surely and in $L_1(\mathbf{H})$, and $S_n = \sum_{i=1}^n X_i$ satisfies the central limit theorem, provided $\sum_{i=-\infty}^{\infty} \|a_i\|_{L(\mathbf{H})} < \infty$ [3,4]. Moreover, Bosq [5] established a Berry-Esseen type inequality with an additional condition $\sum_{i=1}^{\infty} i \|a_i\|_{L(\mathbf{H})} < \infty$.

^{*} Project supported by Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LQ12A01018 and Q12A010066) and Department of Education of Zhejiang Province (Grant No. Y201119891).

[🐄] The paper has been evaluated according to old Aims and Scope of the journal.

^{*} Corresponding author. E-mail address: fukeang@hotmail.com (K.-A. Fu).

^{0898-1221/\$ –} see front matter s 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2012.03.046

Recently, some researchers have investigated the limit theorems of the linear process X_k by assuming that $\{\varepsilon_k, k \in \mathbf{Z}\}$ is a strictly stationary sequence of (negatively) associated H-valued random variables, which extend many previous results. For example, Ko and Kim [6] studied the functional central limit theorem.

Before stating their results, we first introduce the notions of associated random variables, associated random vectors and H-valued associated random variables (See [7,6,8], respectively).

Definition 1.1. A finite sequence of real-valued random variables $\{X_k; 1 \le k \le n\}$ is said to be associated, if

$$Cov{f(X_1,\ldots,X_n), g(X_1,\ldots,X_n)} \ge 0,$$

whenever f and g are coordinatewise increasing and the covariance exists. An infinite sequence of random variables is associated if every finite subsequence is associated.

Definition 1.2. A finite sequence of R^d -valued random vectors $\{X_k: 1 \le k \le n\}$ is said to be associated, if for all coordinatewise increasing functions $f, g: \mathbb{R}^{nd} \to \mathbb{R}$

 $Cov{f(X_1, ..., X_n), g(X_1, ..., X_n)} > 0,$

whenever the covariance exists. An infinite sequence of random vectors is associated if every finite subsequence is associated.

Definition 1.3. A sequence of **H**-valued random variables $\{X_k; k \ge 1\}$ is said to be associated, if for some orthonormal basis $\{e_i; i \ge 1\}$ in **H** and for any $d \ge 1$, the *d*-dimensional sequence $(\langle X_i, e_1 \rangle_H, \ldots, \langle X_i, e_d \rangle_H), i \ge 1$, is associated.

The main result of Ko and Kim [6] reads as follows.

Theorem A. Let X_k be an H-valued linear processes given by (1.1), where $\{a_k, k \in \mathbf{Z}\}$ is a sequence of linear bounded operator satisfying $\sum_{i=-\infty}^{\infty} \|a_i\|_{L(\mathbf{H})} < \infty$, and $\{\varepsilon_k; k \in \mathbf{Z}\}$ is a strictly stationary associated sequence of **H**-valued random variables with $\mathsf{E}\varepsilon_1 = 0$ and $0 < \mathsf{E}\|\varepsilon_1\|^2 < \infty$. If $\tau^2 := \mathsf{E}\|\varepsilon_1\|^2 + 2\sum_{i=2}^{\infty} \mathsf{E}(\langle \varepsilon_1, \varepsilon_i \rangle_{\mathbf{H}}) < \infty$, then we have

$$n^{-1/2} \sum_{i=1}^{[nt]} X_i \to W$$
 in distribution

where W is a Wiener process on **H** with covariance operator $A\Gamma A^*$, $A = \sum_{i=-\infty}^{\infty} a_i$, A^* is the adjoint operator of A, $\Gamma = (\tau_{k\ell})$, $k, \ell = 1, 2, ..., and$

$$\tau_{k\ell} = \mathsf{E}(\langle e_k, \varepsilon_1 \rangle_{\mathbf{H}} \langle e_\ell, \varepsilon_1 \rangle_{\mathbf{H}}) + \sum_{i=2}^{\infty} [\mathsf{E}(\langle e_k, \varepsilon_1 \rangle_{\mathbf{H}} \langle e_\ell, \varepsilon_i \rangle_{\mathbf{H}}) + \mathsf{E}(\langle e_\ell, \varepsilon_1 \rangle_{\mathbf{H}} \langle e_k, \varepsilon_i \rangle_{\mathbf{H}})]$$

Inspired by them, in this paper we aim to further study the limit properties of linear processes generated by dependent H-valued random variables, and the exact probability and moment convergence rates of S_n in some limit theorems are derived.

Let $\{\varepsilon_k; k \in \mathbf{Z}\}$ be a strictly stationary sequence of associated **H**-valued random variables. Let G be an **H**-valued Gaussian random variable with mean zero and covariance $A\Gamma A^*$. Denote the largest eigenvalue of $A\Gamma A^*$ by σ^2 . Let *l* be the dimension of the corresponding eigenspace, and let σ_i^2 , $1 \le i \le l'$ be the positive eigenvalues of $A\Gamma A^*$ arranged in a nonincreasing order and take into account the multiplicities. Further, if $l' < \infty$, put $\sigma_i^2 = 0$, $i \ge l'$. Note that we always have $\sigma_i^2 = \sigma^2$, $1 \le i \le l$ and $\sigma_i^2 < \sigma^2, i > l$ [9]. Now it is in a position to state our main results.

Theorem 1.1. Let X_k be an **H**-valued linear processes given by (1.1), where $\{a_k, k \in \mathbf{Z}\}$ and $\{\varepsilon_k; k \in \mathbf{Z}\}$ are defined as Theorem A. Then under the assumptions of Theorem A, we have that for any $\delta > -1$,

$$\lim_{\epsilon \searrow 0} \epsilon^{2(\delta+1)} \sum_{n=1}^{\infty} \frac{(\log \log n)^{\delta}}{n \log n} \mathsf{P}(\|S_n\| \ge \epsilon \sigma \sqrt{2n \log \log n}) = \frac{\mathsf{E} \|G\|^{2(\delta+1)}}{(\delta+1)(2\sigma^2)^{(\delta+1)}},$$

$$\lim_{\epsilon \searrow 0} \epsilon^{2(\delta+1)} \sum_{n=1}^{\infty} \frac{(n \log n)^{\delta}}{n} \mathsf{P}(\|S_n\| \ge \epsilon \sigma \sqrt{n \log n}) = \frac{\mathsf{E} \|G\|^{2(\delta+1)}}{(\delta+1)(2\sigma^2)^{\delta+1}},$$
(1.2)

Theorem 1.2. Under the conditions of Theorem 1.1, we have that for any $\delta > -1/2$

$$\lim_{\epsilon \searrow 0} \epsilon^{2\delta+1} \sum_{n=1}^{\infty} \frac{(\log \log n)^{\delta-1/2}}{n^{3/2} \log n} \mathsf{E}\{\|S_n\| - \epsilon \sigma \sqrt{2n \log \log n}\}_+ = \frac{\mathsf{E}\|G\|^{2(\delta+1)}}{(\delta+1)(2\delta+1)(2\sigma^2)^{\delta+1/2}},\tag{1.3}$$
$$\lim_{\epsilon \searrow 0} \epsilon^{2\delta+1} \sum_{n=1}^{\infty} \frac{(\log n)^{\delta-1/2}}{n^{3/2}} \mathsf{E}\{\|S_n\| - \epsilon \sigma \sqrt{n \log n}\}_+ = \frac{\mathsf{E}\|G\|^{2(\delta+1)}}{(\delta+1)(2\delta+1)(2\sigma^2)^{\delta+1/2}},$$

Download English Version:

https://daneshyari.com/en/article/472235

Download Persian Version:

https://daneshyari.com/article/472235

Daneshyari.com