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a b s t r a c t

In this paper, we present a numerical approach for solving the system of multi-pantograph
equations with mixed conditions. This system is usually difficult to solve analytically. By
expanding the approximate solutions by means of the Bessel functions of first kind with
unknown coefficients, the proposed approach consists of reducing the problem to a linear
algebraic equation system. The unknown coefficients of the Bessel functions of first kind are
computed using thematrix operations of derivatives togetherwith the collocationmethod.
An error estimation is given. The reliability and efficiency of the proposed scheme are
demonstrated by some numerical examples. All of the numerical computations have been
performed on a computer with the aid of a program written in Matlab.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, many authors have studied numerical methods such as the variational iteration method [1], θ-methods
[2], the Taylor matrix method [3], the reproducing kernel space method [4], the Adomian decomposition method [5] for
approximate solutions of the multi-pantograph equation

y′(t) = λy(t)+

J
j=1

µj(t)y(qjt)+ g(t).

Additionally, the approximate solutions of generalized pantograph equations have been obtained by using the homotopy
method [6], the Taylor polynomial approach [7], the variational iteration method [8], the Bessel collocation method [9],
the Taylor method [10,11]. Also, Brunner et al. [12] have used the Galerkin methods for solutions of delayed differential
equations of Pantograph type.

Recently, Yüzbaşı et al. [9,13–17] have studied the Bessel matrix and collocation methods for numerical solutions of the
neutral delay differential equations, the pantograph equations, the Lane–Emden differential equations, Fredholm integro-
differential equations and Volrerra integral and Fredholm integro-differential equation systems.

In this study, we will develop the matrix and collocation methods studied in [9,13–16] for the approximate solutions of
the system of multi-pantograph equations

k
j=1

βi,j(t)y
(1)
j (t) =

k
j=1

γi,j(t)yj(t)+

R
r=1

k
j=1

µr
i,j(t)yj(qr t)+ gi(t), i = 1, 2, . . . , k, 0 ≤ a ≤ t ≤ b (1)
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with the mixed conditions

k
n=1

(φn,iyn(a)+ ψn,iyn(b)) = λi, n = 1, 2, . . . , k, (2)

where yj(t), (i = 1, 2, . . . , k) are the unknown functions,βi,j(t), γi,j(t), µr
i,j(t) and gi(t) are the functions defined on interval

a ≤ t ≤ b, and also qr , φn,i, ψn,i and λi are appropriate constants.
Our purpose is to obtain the approximate solutions of system (1) expressed in the truncated Bessel series form

yi(t) =

N
n=0

ai,nJn(t), i = 1, 2, . . . , k (3)

so that ai,n, n = 0, 1, 2, . . . ,N are the unknown Bessel coefficients, N is any chosen positive integer such that N ≥ 1, and
Jn(t), n = 0, 1, 2, . . . ,N are the Bessel functions of the first kind defined by

Jn(t) =


N−n
2


k=0

(−1)k

k!(k + n)!


t
2

2k+n

, n ∈ N, 0 ≤ t < ∞.

This paper is arranged as follows:
We give some properties of the Bessel functions in Section 2. In Section 3, we introduce the fundamental matrix relations

to find the matrix forms of each term of the system (1). The method for gaining approximate solutions is described in
Section 4. In Section 5, we present an error estimation for the Bessel polynomial solutions. We illustrate some numerical
examples to clarify the method in Section 6. Section 7 presents a brief summary of this article.

2. Some properties of the Bessel functions

The Bessel differential equation is the linear second-order ordinary differential equation given by

t2
d2y
dt2

+ t
dy
dt

+ (t2 − p2)y = 0

so that p is a non-negative real number. This equation is solved using series solutions. The general solution of this equation
has the form

y = C1Jp(t)+ C2Yp(t)

where C1 and C2 are constants,

Jp(t) =


N−p
2


k=0

(−1)k

k!(k + p)!


t
2

2k+p

and

Yp(t) =
2
π


ln

t
2


+ γ


Jp(t)−

1
2

p−1
n=0

(p − n − 1)!
n!


t
2

2n−p

+
1
2

∞
n=0

(−1)n+1


n

k=1

1
k

n+p
k=1

1
k


1

n!(n + p)!


t
2

2n+p


.

Here, γ ∼= 0.5772156 is Euler’s constant and Jp(t) and Yp(t) are called the Bessel functions of the first kind and the Bessel
functions of the second kind [18], respectively.

The orthogonality relation [19] over the interval [0, b] with respect to weight functionw(ρ) = ρ is given by b

0
Jn
vnm

b
ρ

Jn
vnk

b
ρ

ρdρ =

0, m = k
b2

2
[Jn+1(vnm)]

2, m ≠ k

where ρ ∈ [0, b] and vnm is themth root of the Bessel function Jn(t) = 0, i.e. Jn(vnm) = 0.
The orthogonality relation is used in determining the coefficients in an expansion of a function in terms of a series of

Bessel functions.
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