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a b s t r a c t

In this paper, we shall establish some Hadamard-type and Bullen-type inequalities for
Lipschitzian functions and give several applications for special means.
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1. Introduction

Throughout this paper, let L ≥ 0 and a < b in R.
The inequality
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f (x) dx ≤

f (a) + f (b)
2

(1.1)

which holds for all convex functions f : [a, b] → R, is known in the literature as Hadamard’s inequality [1].
See [2–14], the results of which are the generalization, improvement and extension of the famous integral inequality

(1.1).
Recently, Tseng et al. [9] have established the following Hadamard-type inequality which refines the inequality (1.1).

Theorem A. Suppose that f : [a, b] → R is a convex function on [a, b]. Then we have the inequalities:
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The third inequality in (1.2) is known in the literature as Bullen’s inequality.

In what follows we recall the following definition.

Definition 1. A function f : I ⊂ R → R is called an L-Lipschitzian function on the interval I of real numbers if

|f (x) − f (y)| ≤ L |x − y|

for all x, y ∈ I .

Dragomir et al. [5] and Matić and Pečarić [8] established the following Hadamard-type inequalities for Lipschitzian
functions.

Theorem B. Let f : I ⊂ R → R be an L-Lipschitzian function on the interval I of real numbers and a, b ∈ I . Then, we have the
following inequalities f (a) + f (b)
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(1.3)
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In this paper, we shall establish some Hadamard-type and Bullen-type inequalities for Lipschitzian functions and give
several applications for special means.

2. Hadamard-type inequalities for Lipschitzian functions

Throughout this section, let I be an interval in R, a ≤ A ≤ B ≤ b in I and let f : I → R be an L-Lipschitzian function.
In the next theorem, let α ∈ [0, 1] , V = (1 − α) a + αb, and define Vα as follows:

(1) If a ≤ V ≤ A ≤ B ≤ b, then

Vα (A, B) = (A − a)2 − (A − V )2 + (B − V )2 + (b − B)2 .

(2) If a ≤ A ≤ V ≤ B ≤ b, then

Vα (A, B) = (A − a)2 + (V − A)2 + (B − V )2 + (b − B)2 .

(3) If a ≤ A ≤ B ≤ V ≤ b, then

Vα (A, B) = (A − a)2 + (V − A)2 + (b − B)2 − (V − B)2 .

Theorem 1. Let A, B, α, V , Vα and the function f be defined as above. Then we have the inequalityαf (A) + (1 − α) f (B) −
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. (2.1)

Proof. Using the hypothesis of f , we have the following inequalityαf (A) + (1 − α) f (B) −
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Now, using simple calculations, we obtain the following identities
 V
a |A − x| dx and

 b
V |B − x| dx.

(1) If a ≤ V ≤ A ≤ B ≤ b, then we have V

a
|A − x| dx =

(A − a)2 − (A − V )2

2
and

 b

V
|B − x| dx =

(B − V )2 + (b − B)2

2
.
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