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a b s t r a c t

We present functional-type a posteriori error estimates in isogeometric analysis. These es-
timates, derived on functional grounds, provide guaranteed and sharp upper bounds of
the exact error in the energy norm. Moreover, since these estimates do not contain any
unknown/generic constants, they are fully computable, and thus provide quantitative in-
formation on the error. By exploiting the properties of non-uniform rational B-splines, we
present efficient computation of these error estimates. The numerical realization and the
quality of the computed error distribution are addressed. The potential and the limitations
of the proposed approach are illustrated using several computational examples.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The geometry representations in finite element methods (FEM) and computer aided design (CAD) have been developed
independent of each other, and are optimized for the purposes within their respective fields. As a consequence, the repre-
sentations are different from each other, and a transfer of geometry information from CAD to FEM programmes (and vice
versa) requires a transformation of geometry data. These transformations are, in general, not only costly, but also prone to
approximation errors, and may require manual input.

Isogeometric analysis (IGA), introduced byHughes et al. [1], see also [2], aims at closing this gap between FEMandCAD. The
key observation is that it is a widespread standard in CAD to use geometry representations based on non-uniform rational
B-splines (NURBS), and that these NURBS basis functions have properties which make them suitable as basis functions for
FEM. Instead of transforming the geometry data to a conventional FEM representation, the original geometry description is
used directly, and the underlying NURBS functions are used as basis for the discrete solution. This way, the geometry is rep-
resented exactly in the sense that the geometry obtained from CAD is not changed. Thus, the need for data transformation
is eliminated, and furthermore, the exact representation from the coarsest mesh is preserved throughout the refinement
process. IGA has been thoroughly studied and analyzed (see, e.g., [3–7]), and its potential has been shown by successful
applications to a wide range of problems (see, e.g., [8–12]).

As mentioned above, the most widely used spline representations in CAD are based on NURBS. The straightforward def-
inition of NURBS basis functions leads to a tensor-product structure of the basis functions, and thus of the discretization.
Since naive mesh refinement in a tensor-product setting has global effects, the development of local refinement strate-
gies for isogeometric analysis is a subject of current active research. Such local refinement techniques include, for example,
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T-splines [13–17], truncated hierarchical B-splines (THB-splines) [18,19], polynomial splines over hierarchical T-meshes
(PHT-splines) [20,21], and locally-refinable splines (LR-splines) [22,23].

The issue of adaptive, local refinement is closely linked to the question of efficient a posteriori error estimation (see,
e.g., [24,25] for a general overview on error estimators). In the light of adaptive refinement, an error estimator has to iden-
tify the areas where further refinement is needed due to the local error being significantly larger than in the rest of the
domain. Hence, an accurate indication of the error distribution is essential. Another important objective in computing a
posteriori error estimates is to address the quality assurance, i.e., to quantify the error in the computed solution with certain
degree of guarantee. However, a posteriori error estimation in isogeometric analysis is still in an infancy stage. To the best
of the authors’ knowledge, the only published results are [26–31,21,32,33].

A posteriori error estimates based on hierarchical bases, proposed by Bank and Smith [34], have been used in [27,31]. The
reliability and efficiency of this approach is subjected to the saturation assumption on the (enlarged) underlying space and
the constants in the strengthened Cauchy inequality. As the authors remarked, the first assumption is critical and its validity
depends on the considered example. Moreover, an accurate estimation of constants in the strengthened Cauchy inequality
requires the solution of generalized minimum eigenvalue problem. As noted in [28, p. 41], this approach delivers less than
satisfactory results.

Residual-based a posteriori error estimates have been used in [28,21,32,33]. This approach requires the computation of
constants in Clement-type interpolation operators. Such constants are mesh (element) dependent, often generic/unknown
or incomputable for general element shape; and the global constant often over-estimates the local constants, and thus the
exact error. This fact has been explicitly stated by the authors in [28, pp. 42–43] and in [21, Remark 1].

Goal-oriented error estimation approach has been studied in [26,29,30]. The results presented in these studies show
that neither the estimates of this approach are guaranteed to be an upper bound, nor the efficiency indices of the estimates
are sharp. Moreover, this approach also requires the solution of an adjoint problem, the cost of which cannot be entirely
neglected.

The approach of Zienkiewicz–Zhu type a posteriori error estimates is based on post-processing of approximate solutions,
and depend on the superconvergence properties of the underlying basis. To the best of authors’ knowledge, superconver-
gence properties for B-splines (NURBS) functions are not yet known.

Summarily, in general situations, the reliability and efficiency of thesemethods often depend onundetermined constants,
which is not suitable for quality assurance purposes. In this paper, we present functional-type a posteriori error estimates for
isogeometric discretizations. These error estimates, which were introduced in [35–37] and have been studied for various
fields (see [25] and the references therein), provide guaranteed, sharp and fully computable bounds (without any generic
undetermined constants). These estimates are derived on purely functional grounds (based on integral identities or func-
tional analysis) and are thus applicable to any conforming approximation in the respective space. For elliptic problems with
the weak solution u ∈ H1

0 (Ω), these error bounds involve computing an auxiliary function y ∈ H(Ω, div). In order to get
a sharp estimate, this function y is computed by solving a global problem. This could be perceived as a drawback when
compared to error estimation techniques which rely on local computations and are thus apparently cheaper. However, as
briefly explained above, our emphasis is not only on adaptivity, but also on quantifying the error in the computed solution
(and thus guaranteeing the quality of the computed solution). Therefore, the associated cost should be weighed against the
stated objectives. To the best of authors’ knowledge, there is no other, particularly cheaper, method available which can
fulfill these objectives in general situations. In this paper, we will elaborate how such estimates can be computed efficiently
by a proper set-up of the global problem.

Two aspectsmotivate the application of functional-type error estimates in IGA. Firstly, unlike the standard Lagrange basis
functions, NURBS basis functions of degree p are, in general, globally Cp−1-continuous. Hence, NURBS basis functions of de-
gree p ≥ 2 are, in general, at least C1-continuous, and therefore, their gradients are automatically inH(Ω, div). Thereby, we
avoid constructing complicated functions in H(Ω, div), in particular for higher degrees (see, e.g., [38–40]). Secondly, since
the considered problem is solved in an isogeometric setting, an efficient implementation of NURBS basis functions is readily
available, which can be used to construct the above mentioned function y. Hence, applying the technique of functional-type
a posteriori error estimation in a setting that relies only on the use of already available NURBS basis functions is greatly
appealing.

The remainder of this paper is organized as follows. In Section 2, we define the model problem, and recall the definition
and some important properties of B-spline and NURBS basis functions. In Section 3, we first recall functional-type a poste-
riori error estimates and known implementation issues. Then, we derive a quality criterion and the local error indicator. In
Section 4, we discuss a cost-efficient realization of the proposed error estimator using an illustrative numerical example.
Further numerical examples are presented in Section 5, and finally, conclusions are drawn in Section 6.

2. Preliminaries

In order to fix notation and to provide an overview, we define the model problem and recall the definition and some
aspects of isogeometric analysis in this section.
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