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a b s t r a c t

In this paper, we consider the numerical solution of the time-fractional diffusion equation
with a non-local boundary condition. The method of approximate particular solutions
(MAPS) using multiquadric radial basis function (MQ-RBF) is employed for this equation.
Due to the accuracy of the MQ-based meshless methods is severely influenced by the
shape parameter, we adopt a leave-one-out cross validation (LOOCV) algorithm proposed
by Rippa [34] to enhance the performance of the MAPS. The numerical results obtained
show that the proposed numerical algorithm is accurate and computationally efficient for
solving time-fractional diffusion equation with a non-local boundary condition.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus has attracted considerable attention during the past several decades due to its widespread applica-
tions in diverse fields of science and engineering [1]. Because of the non-local properties of fractional operators, obtaining
the analytical solutions of the fractional differential equations (FDEs) is more challenging or sometimes even impossible.
Hence the proposal, development, and analysis of numerical methods to solve FDEs are at present a quite active field of
research, and many methods have been considered, for instance, finite difference method [2–4], finite element method
[5,6], spectral method [7–9], meshless method [10–14], and so on.

In the current work, a numerical investigation would be given to approximate the solution of the following two-
dimensional time-fractional diffusion equation (TFDE):

cDα
t u(x, t) = 1u(x, t) + f (x, t), x ∈ Ω, t ∈ (0, T ], (1)

with the following initial and boundary conditions:

u(x, 0) = u0(x), x ∈ Ω, (2)
u(x, t) = g1(x, t), x ∈ 01, t ∈ (0, T ], (3)
u(x, t) = g2(x)h(t), x ∈ 02, t ∈ (0, T ], (4)
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and the non-local integral condition:
Ω

u(x, t)dx = m(t), t ∈ (0, T ], (5)

where u(x, t) and h(t) are unknown functions, u0(x), g1(x, t) and g2(x) are given sufficiently smooth functions, ∂Ω =

01


02 is the closed curve bounding the region Ω . The boundary condition (4) is variable separable, with spatial
dependence given by g2(x) and time dependence given by h(t). Here cDα

t (0 < α < 1) denotes the Caputo fractional
derivative of order α with respect to t and it is defined by [15]

cDα
t u(x, t) =

1
0(1 − α)

 t

0

∂u(x, η)

∂η

dη
(t − η)α

, 0 < α < 1,

where 0(·) is the Gamma function.
The condition (5) is encountered in many important applications in heat transfer, thermoelasticity, and industry, see

[16–19]. Because of the importance of this type of equations in science and engineering, in the recent decades there had been
growing interest in development of computational techniques for the numerical solution of non-classical boundary values
problems. Specially, the numerical investigation of the two-dimensional diffusion equation with non-classical boundary
conditions have been considered by a number of authors, see, e.g., [20–25]. In papers [23,24], Dehghan developed the
implicit and explicit finite-difference schemes for the two-dimensional parabolic problems with non-classical boundary
conditions. The alternating direction implicit (ADI) schemes have been investigated in [22,25]. In [26], Sajavičius constructed
a weighted splitting finite difference approximation of a two-dimensional parabolic equation with non-local integral
conditions. However, the application of the finite difference scheme to irregular domains seems to be not straightforward.
Recently, Abbasbandy et al. [20,21] developed the meshless local Petrov–Galerkin method (MLPG) based on the moving
least squares to obtain approximate solution of the non-classical diffusion equation with Dirichlet and Neumann boundary
conditions. Kazem and Rad [27] have presented and applied a meshless method based on the radial basis functions (RBFs)
for the non-local boundary value problemwith Neumann boundary conditions. A comparison betweenmeshless local weak
and strong forms based on particular solutions for a non-classical diffusion model has also been undertaken by Abbasbandy
et al. [28]. Their results are quite encouraging. However, all abovementioned papers dealt with the integer order differential
equations. As we have known, the work done on the numerical solution of the TFDE with non-local boundary conditions is
relatively sparse.

In the present paper, we investigate a numerical scheme based on the method of approximate particular solutions
(MAPS) [29] using multiquadratic radial basis function (MQ-RBF) [30,31] for solving time-fractional diffusion equation with
non-local boundary conditions. Results for several numerical examples are presented to demonstrate the efficacy of the
new scheme. It should be noted that the MAPS using MQ-RBF contains a user defined shape parameter, c , which affects
the stability and accuracy of the solution. The accuracy of the solution continues to improve as c increases; however, when
c is large, the accuracy gets worse and eventually breaks down [32,33]. Thus, the value of the shape parameter has to be
selected carefully. Almost existed approach work in time independent problems with a fixed c . Hence, the challenge of how
to choose optimal shape parameter remains untouched. In this paper, we apply a leave-one-out cross validation (LOOCV)
algorithm proposed by Rippa [34] to select a good value of shape parameter c for MAPS.

The outline of the paper is as follows. In Section 2, we briefly describe the MAPS which is used for solving the time-
fractional diffusion equations, and how to compute the good value of the shape parameter. In Section 3, we present the
results for several numerical examples to demonstrate the stability and high accuracy of the numerical algorithm. Finally,
concluding remarks are given in Section 4.

2. Methodology

In this section, we describe the numerical scheme for solving the time-fractional diffusion equation with a non-local
boundary condition.

2.1. Time fractional derivative discretization

To illustrate how to apply the MAPS as a spatial meshless scheme to solve the problem (1)–(5), we first reduce the above
time-fractional diffusion equation into a series of elliptic PDEs using the finite difference approximation to discretize the
time-fractional derivative. We note here that there are other reduction techniques such as the Laplace transform and the
Fourier transform that can achieve the same purpose.

Suppose the time interval [0, T ] is discretized uniformly into K subintervals; define tk = k1t, k = 0, 1, . . . , K , where
1t = T/K is the time step. Let u(x, tk) be the exact value of a function u(x, t) at time step tk. Then, the time fractional
derivative at t = tk+1 can be approximated [8]

cDα
t u(x, tk+1) =

(1t)−α

0(2 − α)

k
j=0

ωj[u(x, tk−j+1) − u(x, tk−j)] + O((1t)2−α), (6)

for k = 0, 1, . . . , K − 1 where the weight is defined as ωj = (j + 1)1−α
− j1−α, j = 0, 1, . . . , k.



Download English Version:

https://daneshyari.com/en/article/472358

Download Persian Version:

https://daneshyari.com/article/472358

Daneshyari.com

https://daneshyari.com/en/article/472358
https://daneshyari.com/article/472358
https://daneshyari.com

