

Available online at www.sciencedirect.com

An International Journal computers & mathematics with applications

Computers and Mathematics with Applications 55 (2008) 2498-2505

www.elsevier.com/locate/camwa

A general refinement of Jordan-type inequality

Ling Zhu

Department of Mathematics, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China Received 2 March 2006; received in revised form 20 September 2007; accepted 10 October 2007

Abstract

In this work, a general form of Jordan's inequality:

$$P_{2N}(x) + a_{N+1}(\pi^2 - 4x^2)^{N+1} \le \frac{\sin x}{x} \le P_{2N}(x) + \frac{1 - \sum_{n=0}^{N} a_n \pi^{2n}}{\pi^{2(N+1)}} (\pi^2 - 4x^2)^{N+1}$$

is established, where $x \in (0, \pi/2]$, $P_{2N}(x) = \sum_{n=0}^{N} a_n (\pi^2 - 4x^2)^n$, $a_0 = \frac{2}{\pi}$, $a_1 = \frac{1}{\pi^3}$, $a_{n+1} = \frac{2n+1}{2(n+1)\pi^2}a_n - \frac{1}{16n(n+1)\pi^2}a_{n-1}$, and $N \ge 0$ is a natural number. The applications of the above result give the general improvement of the Yang Le inequality and a new infinite series $(\sin x)/x = \sum_{n=0}^{\infty} a_n (\pi^2 - 4x^2)^n$ for $0 < |x| \le \pi/2$. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Lower and upper bounds; A general form of Jordan's inequality; Yang Le inequality; The Spherical Bessel Functions (SBFs); The SBFs of the first kind $j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+\frac{1}{2}}(x)$; A new infinite series for $(\sin x)/x$

1. Introduction

The following result is known as Jordan's inequality [1]:

Theorem 1. If $0 < x \le \pi/2$, then

$$\frac{2}{\tau} \le \frac{\sin x}{x} < 1 \tag{1}$$

with equality if and only if $x = \pi/2$.

Debnath and Zhao [2] have obtained a new lower bound for the function $\frac{\sin x}{x}$. Their result reads as follows

Theorem 2. *If* $0 < x \le \pi/2$, *then*

$$\frac{\sin x}{x} \ge \frac{2}{\pi} + \frac{1}{\pi^3} (\pi^2 - 4x^2) \tag{2}$$

with the equality if and only if $x = \pi/2$.

E-mail address: zhuling0571@163.com.

^{0898-1221/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2007.10.004

The author of this paper [3] obtained a further result:

Theorem 3. If $0 < x \le \pi/2$, then

$$\frac{2}{\pi} + \frac{1}{\pi^3} (\pi^2 - 4x^2) \le \frac{\sin x}{x} \le \frac{2}{\pi} + \frac{\pi - 2}{\pi^3} (\pi^2 - 4x^2)$$
(3)

with the equalities if and only if $x = \pi/2$. Furthermore, $\frac{1}{\pi^3}$ and $\frac{\pi-2}{\pi^3}$ are the best constants in (3).

Recently, the author of this paper [4] has given new improvement of Jordan's inequality.

Theorem 4. If $0 < x \le \pi/2$, then

$$\frac{2}{\pi} + \frac{1}{\pi^3} (\pi^2 - 4x^2) + \frac{12 - \pi^2}{16\pi^5} (\pi^2 - 4x^2)^2 \le \frac{\sin x}{x} \le \frac{2}{\pi} + \frac{1}{\pi^3} (\pi^2 - 4x^2) + \frac{\pi - 3}{\pi^5} (\pi^2 - 4x^2)^2 \tag{4}$$

with the equalities if and only if $x = \pi/2$. Furthermore, $\frac{12-\pi^2}{16\pi^5}$ and $\frac{\pi-3}{\pi^5}$ are the best constants in (4).

In the form of (3) and (4), we finally obtain the general Jordan's inequality as follows

Theorem 5. Let $0 < x \le \pi/2$ and $N \ge 0$ is a natural number, then

$$P_{2N}(x) + a_{N+1}(\pi^2 - 4x^2)^{N+1} \le \frac{\sin x}{x} \le P_{2N}(x) + \frac{1 - \sum_{n=0}^{N} a_n \pi^{2n}}{\pi^{2(N+1)}} (\pi^2 - 4x^2)^{N+1}$$
(5)

with the equalities if and only if $x = \pi/2$, where, $P_{2N}(x) = \sum_{n=0}^{N} a_n (\pi^2 - 4x^2)^n$ and

$$a_0 = \frac{2}{\pi}, \qquad a_1 = \frac{1}{\pi^3}, \qquad a_{n+1} = \frac{2n+1}{2(n+1)\pi^2}a_n - \frac{1}{16n(n+1)\pi^2}a_{n-1}, \quad n = 1, 2, \dots$$
 (6)

Furthermore, a_{N+1} and $\frac{1-\sum_{n=0}^{N} a_n \pi^{2n}}{\pi^{2(N+1)}}$ are the best constants in (5).

2. Six lemmas

Lemma 1 ([5,6]). Let $f, g : [a, b] \to \mathbb{R}$ be two continuous functions which are differentiable on (a, b). Further, let $g' \neq 0$ on (a, b). If f'/g' is increasing (or decreasing) on (a, b), then the functions

$$\frac{f(x) - f(b)}{g(x) - g(b)}$$

and

$$\frac{f(x) - f(a)}{g(x) - g(a)}$$

are also increasing (or decreasing) on (a, b).

Lemma 2 ([7,8]). Let $j_n(x)$ be the Spherical Bessel Functions of the first kind, $j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+\frac{1}{2}}(x)$, then

$$j_n(x) = (-x)^n \left[\frac{1}{x}\frac{d}{dx}\right]^n \frac{\sin x}{x}, \quad n = 0, 1, 2, \dots$$
(7)

Lemma 3 ([9,10]). Let $j_n(x)$ be the SBFs of the first kind, $j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+\frac{1}{2}}(x)$, then

$$j_{n+1}(x) = \frac{2n+1}{x} j_n(x) - j_{n-1}(x)$$
(8)

or

$$(2n+1)j_n(x) = x[j_{n+1}(x) + j_{n-1}(x)].$$
(9)

Download English Version:

https://daneshyari.com/en/article/472379

Download Persian Version:

https://daneshyari.com/article/472379

Daneshyari.com