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Abstract

In this work, a general form of Jordan’s inequality:
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is established, where x € (0, 7 /2], Pyy(x) = ano ap(me —4x)", apg = 7001 = 23, ap41 = 2(n+1)n2an 16n(n+1)n2a”_1’

and N > 0 is a natural number. The applications of the above result give the general improvement of the Yang Le inequality and a
new infinite series (sinx)/x = Zsozo an (7t2 — 4x2)” for0 < |x| < m/2.
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1. Introduction
The following result is known as Jordan’s inequality [1]:

Theorem 1. If 0 < x < /2, then
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T X
with equality if and only if x = /2.

Debnath and Zhao [2] have obtained a new lower bound for the function % Their result reads as follows

Theorem 2. If 0 < x < /2, then
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with the equality if and only if x = /2.
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The author of this paper [3] obtained a further result:

Theorem 3. If 0 < x < /2, then
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with the equalities if and only if x = 7 /2. Furthermore, # and ”n—}z are the best constants in (3).

Recently, the author of this paper [4] has given new improvement of Jordan’s inequality.

Theorem 4. If 0 < x < /2, then
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In the form of (3) and (4), we finally obtain the general Jordan’s inequality as follows
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with the equalities if and only if x = m /2. Furthermore, and ”ﬂ—? are the best constants in (4).

Theorem 5. Let 0 < x < mw/2 and N > 0 is a natural number, then
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with the equalities if and only if x = 7 /2, where, Pyy(x) = 2,1:/:0 an(w? — 4x*)" and
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Furthermore, ay11 and — i are the best constants in (5).

2. Six lemmas
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Lemma 1 (/5,6])). Let f, g : [a, b] — R be two continuous functions which are differentiable on (a, b). Further, let

g #0on(a,b).If f'/g isincreasing (or decreasing) on (a, b), then the functions

J&x) = f(b)

g(x) —g(b)
and

f(x)— fla)

g(x) —g(a)

are also increasing (or decreasing) on (a, b).

Lemma 2 (/7,8]). Let j,(x) be the Spherical Bessel Functions of the first kind, j,(x) = ./ 211 1(x), then
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Lemma 3 (/9,10]). Let j,(x) be the SBFs of the first kind, j,(x) = /ZJT—xJnJr% (x), then

1
Jn1(x) = Jn(X) = Jn—1(x)
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or

@2n + 1) jn(x) = x[Ja+1(x) + ja—1(x0)].
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