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a b s t r a c t

Wepropose a binary classifier based on the single hidden layer feedforward neural network
(SLFN) using radial basis functions (RBFs) and sigmoid functions in the hidden layer. We
use a modified attribute-class correlation measure to determine the weights of attributes
in the networks. Moreover, we propose new weights called as influence weights to utilize
in the weights connecting the input layer and the hidden layer nodes (hidden weights)
of the network with sigmoid hidden nodes. These weights are calculated as the sum of
conditional probabilities of attribute values given class labels. Our learning procedure
of the networks is based on the extreme learning machines; in which the parameters
of the hidden nodes are first calculated and then the weights connecting the hidden
nodes and output nodes (output weights) are found. The results of the networks with the
proposed weights on some benchmark data sets show improvements over those of the
conventional networks.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past two decades, single hidden layer feedforward neural networks (SLFNs) have become an interesting topic
of research. There are two main variations for SLFNs, those with additive hidden nodes and those with radial basis function
(RBF) hidden nodes [1]. Using both nonlinear transfer functions provides the power of nonlinearity for the networks.

Radial basis function networks, first introduced in the neural network domain by Broomhead and Lowe [2], represent
a specific class of SLFNs in which the linearly weighted structure of the networks allows for easy and fast training using
linear optimization techniques. In such networks, the parameters in the hidden layer (known as hidden parameters) can
often be pre-fixed. RBF networks have been proved capable of universal approximation [3,4]. Moreover, the total number
of candidate basis functions involved in an RBF network model is not very large and does not increase when the number of
input variables increases [5]. Due to these attractive properties, RBF networks have become a widely used network model
in many areas such as function approximation [2,4] and classification and pattern recognition [6–9].

After selection of the number of the hidden nodes and basis functions in the RBF network, there are generally three types
of parameters that need to be determined: (1) the position of the RBF centers, (2) the values of RBF widths, and (3) the
connecting weights between the hidden layer and the output layer neurons (output weights). These parameters can be
determined by performing either a combined procedure or separate procedures [5].

In combined approaches [5], all the three types of parameters are simultaneously determined by performing appropriate
nonlinear optimization methods. Unlike combined learning approaches, the separate procedures include two phases of
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learning [9–12]. In the first phase, the hidden parameters, including the centers and the widths, are determined, and in
the next phase, the output weights are calculated.

For the learning of the output weights in an RBF network, as well as for the learning of an SLFN with sigmoid hidden
nodes, error back propagation (EBP) is the most cited algorithm [11]. The main drawbacks of the EBP algorithm are its slow
training and unreliability in its convergence due toweight initialization [13]. Although, the training time for an RBF network
with the EBP learning algorithm is shorter than that for a multi-layer perceptron network, this time is still rather long and
the efficiency of the algorithm depends on the choice of initial values [12].

Recently, Huang et al., [14], proposed a new fast algorithm for training SLFNs, known as the extreme learning machine
(ELM), that can tackle some of the shortcomings of the EBP algorithm.

In the ELM algorithm, the weights and biases between the input and the hidden layer nodes are randomly assigned.
The only unknown parameters that need to be determined are the output linear weights which are assigned through the
least-square method [15,16].

The ELM is fast in classification tasks and also generates a high performance generalization compared with most of the
existing methods such as backpropagation (BP) networks and support vector machine (SVM), reported in [14]. Moreover,
the experimental results in [14] show that the standard deviations of the results obtained by the ELM algorithm are less
than those of other methods. Here, our procedure for training the networks is the same as the theory of the ELM algorithm
with a strong emphasis on attribute weighting and the hidden weights of the SLFNs.

The novelty of this work is two-fold. First, we use attribute weighting in the networks which uses an attribute-class
correlation measure. The attribute-class correlation measure used in this work is a modification of the theory described
in [17] which is originally used for attribute ranking.

Second, we introduce influence weights to utilize in the hidden weights of the SLFNs with sigmoid kernels in the
hidden layer. The influence weights are calculated from the conditional probabilities of the attributes given class labels.
These weights have a similar form to the influence weights proposed by Quinn et al. [18] which are directly used for data
classification.

The paper is structured as follows. Sections 2 and 3 give a brief review on extreme learningmachines and an RBF network,
respectively. In Section 4, we propose influence weights and attribute weighting to improve the network performance
which follows by the network learning procedure in Section 5. The experimental results and comparison of the proposed
approaches with the existing methods, including the RBF network and the SLFN with sigmoid hidden nodes, are reported in
Section 6. We conclude the paper in Section 7 followed by a few directions for future work.

2. Extreme learning machines

This brief outline of the ELM algorithm is based on that in [14]. In the ELM, the parameters of hidden nodes, such as
weights and biases between the input and the hidden layer nodes, are randomly assigned. Therefore, the only parameters
which need to be determined are the output weights.

Let us assume a data set S = {(xs, ys)|s = 1, . . . ,N} of N arbitrary distinct samples, where xs is an n-dimensional
vector of decision-making attributes, xs = [xs1, xs2, . . . , xsn]T , and ys is the desired output corresponding to the input
xs, ys = [ys1, ys2, . . . , ysm]

T , then the output of an SLFN, withN additive nodes, can be mathematically modeled as:

N
j=1

αjhj(xs) + α0 =

N
j=1

αjh(wj.xs + bj) + α0 =ys s = 1, . . . ,N (1)

where wj = [w1j, w2j, . . . , wnj]
T and bj are the learning parameters of the j-th hidden node, αj, j = 1, . . . ,N is the weight

vector connecting the j-th hidden node to the output nodes, α0 is the bias vector to the output layer, h is the hidden node
activation function andwj.xs denotes the inner product of vectorswj and xs in Rn.

If an SLFN withN hidden nodes can approximate these N samples with zero error, meaning that
N

s=1 ∥ys −ys∥ = 0, it
then implies that there exist αj,wj and bj such that:

Hα = Y (2)

where

H =

1 h1(x1) · · · hN(x1)
... · · ·

...
1 h1(xN) · · · hN(xN)

 ,

α = [α0, α1, . . . , αN ]
T

and

Y = [y1, y2, . . . , yN ]
T .
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