EI SEVIER

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

Computers S, mathematics with registrations

journal homepage: www.elsevier.com/locate/camwa

Integral transforms of functions to be in certain class defined by the combination of starlike and convex functions

K. Raghavendar, A. Swaminathan*

Department of Mathematics, Indian Institute of Technology, Roorkee-247 667, Uttarkhand, India

ARTICLE INFO

Article history:
Received 20 September 2011
Received in revised form 28 December 2011
Accepted 28 December 2011

Keywords: Pascu-class of α convex functions Starlike functions Convex functions Integral transforms Hypergeometric functions

ABSTRACT

Let $P_{\gamma}(\beta)$, $\beta < 1$, denote the class of all normalized analytic functions f in the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ such that

$$\operatorname{Re}\left(e^{i\phi}\left((1-\gamma)\frac{f(z)}{z}+\gamma f'(z)-\beta\right)\right)>0,\quad z\in\mathbb{D}$$

for some $\phi \in \mathbb{R}$. Let $M(\mu, \alpha)$, $0 \le \mu < 1$, denote the Pascu class of α -convex functions of order μ and given by the analytic condition

$$\operatorname{Re} \frac{\alpha z (zf'(z))' + (1-\alpha)zf'(z)}{\alpha zf'(z) + (1-\alpha)f(z)} > \mu$$

which unifies $S^*(\mu)$ and $C(\mu)$, respectively, the classes of analytic functions that map $\mathbb D$ onto the starlike and convex domain. In this work, we consider integral transforms of the form

$$V_{\lambda}(f)(z) = \int_{0}^{1} \lambda(t) \frac{f(tz)}{t} dt.$$

The aim of this paper is to find conditions on $\lambda(t)$ so that the above transformation carry $P_{\gamma}(\beta)$ into $M(\mu, \alpha)$. As applications, for specific values of $\lambda(t)$, it is found that several known integral operators carry $P_{\gamma}(\beta)$ into $M(\mu, \alpha)$.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction and key lemmas

Let $\mathcal A$ denote the class of all functions f analytic in the open unit disc $\mathbb D=\{z\in\mathbb C:|z|<1\}$ with the normalization f(0)=f'(0)-1=0 and $\mathcal S$ be the class of functions $f\in\mathcal A$ that are univalent in $\mathbb D$. A function $f\in\mathcal S$ is said to be starlike or convex, if f maps $\mathbb D$ conformally onto the domains, respectively, starlike with respect to origin and convex. Note that f is convex in $\mathbb D$ if and only if zf' is starlike in $\mathbb D$ follows from the well-known Alexander theorem (see [1] for details).

The generalization of these two classes are given by the following analytic characterizations;

$$\begin{split} \mathbf{S}^*(\mu) &:= \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{\mathbf{z} f'(\mathbf{z})}{f(\mathbf{z})} > \mu, \ 0 \leq \mu < 1 \right\} \\ K(\mu) &:= \left\{ f \in \mathcal{A} : \operatorname{Re} \left(1 + \frac{\mathbf{z} f''(\mathbf{z})}{f'(\mathbf{z})} \right) > \mu, \ 0 \leq \mu < 1 \right\}, \end{split}$$

so that $S^*(0) \equiv S^*$ and $K(\mu) \equiv K$ are the starlike and convex classes respectively.

E-mail addresses: raghavendar248@gmail.com (K. Raghavendar), swamifma@iitr.ernet.in, mathswami@yahoo.com, mathswami@gmail.com (A. Swaminathan).

^{*} Corresponding author. Tel.: +91 1332 28 5182.

A function $f \in A$ is said to be in the Pascu class of α -convex functions of order μ (0 $\leq \mu$ < 1) if [2]

$$\operatorname{Re} \frac{\alpha z (zf'(z))' + (1-\alpha)zf'(z)}{\alpha zf'(z) + (1-\alpha)f(z)} > \mu.$$

or in other words

$$\alpha z f'(z) + (1 - \alpha) f(z) \in \delta^*(\mu).$$

This class is denoted by $M(\alpha, \mu)$. Note that $M(0, \mu) = S^*(\mu)$ and $M(1, \mu) = K(\mu)$ which implies that $M(\alpha, \mu)$ is a smooth passage between the class of starlike and convex functions.

Further, $f \in \mathcal{A}$ is said to be close-to-convex in \mathbb{D} , with respect to a starlike function g, if f satisfies the analytic characterization, $\operatorname{Re}\left(e^{i\sigma}\frac{zf'(z)}{g(z)}\right)>0,\ z\in\mathbb{D},\ \sigma\in\mathbb{R}$. These close-to-convex functions f satisfy a nice geometric property that the complement of image of \mathbb{D} under f are the union of closed halflines such that the corresponding open halflines are disjoint [3, Theorem 2.12, p. 52]. We denote by \mathcal{C} the class of all close-to-convex functions in \mathbb{D} .

The main objective of this work is to find conditions on the non-negative real valued integrable function $\lambda(t)$ satisfying $\int_0^1 \lambda(t) dt = 1$, such that the operator

$$F(z) = V_{\lambda}(f)(z) := \int_0^1 \lambda(t) \frac{f(tz)}{t} dt \tag{1.1}$$

is in the class $M(\alpha, \mu)$. Note that this operator was introduced in [4]. To investigate this admissibility property the class to which the function f belongs is important. Let $P_{\gamma}(\beta)$, $\beta < 1$, denote the class of all normalized analytic functions f in the unit disc $\mathbb D$ such that

$$\operatorname{Re}\left(e^{\mathrm{i}\phi}\left((1-\gamma)\frac{f(z)}{z}+\gamma f'(z)-\beta\right)\right)>0,\quad z\in\mathbb{D}$$

for some $\phi \in \mathbb{R}$. This class and its particular cases were considered by many authors to prove that the operator given by (1.1) is univalent under certain conditions and in $M(\alpha, \mu)$ for some particular values of α and μ . This work was motivated in [4] by studying the conditions under which $V_{\lambda}(P_1(\beta)) \subset M(0, 0)$ and generalized in [5] by studying the case $V_{\lambda}(P_{\gamma}(\beta)) \subset M(0, 0)$. In [6] the conditions under which $V_{\lambda}(P_1(\beta)) \subset M(1, 0)$ were studied. An extensive study of $V_{\lambda}(P_{\gamma}(\beta))$ to the class $M(0, \mu)$ is in [7] and to the class $M(1, \mu)$ is in [8].

One of the main tools in the objective of this work is the following. If f and g are in \mathcal{A} with the power series expansions $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ respectively, then the convolution or Hadamard product of f and g is given by $h(z) = \sum_{k=0}^{\infty} a_k b_k z^k$.

For $\Lambda: [0, 1] \to \mathbb{R}$ integrable over [0, 1] and positive on (0, 1), let

$$L_{\Lambda}(f) := \inf_{z \in \Delta} \int_0^1 \Lambda(t) \left(\operatorname{Re} \frac{f(tz)}{tz} - \frac{1}{(1+t)^2} \right) dt, \quad f \in \mathcal{C},$$
(1.2)

and

$$L_{\Lambda}(\mathcal{C}) = \inf_{f \in \mathcal{C}} L_{\Lambda}(f). \tag{1.3}$$

Fournier and Ruscheweyh [4] have established the following:

Theorem 1.1. (i) If $\frac{\Lambda(t)}{1-t^2}$ is decreasing on (0, 1) then $L_{\Lambda}(\mathcal{C}) = 0$.

(ii) If $\lambda: [0,1] \to \text{Re } R$ is non-negative with $\int_0^1 \lambda(t) dt = 1$, $\Lambda(t) = \int_t^1 \lambda(t) \frac{dt}{t}$ satisfies $t \Lambda(t) \to 0$ for $t \to 0+$ and

$$\mathcal{V}_{\lambda}(f) = \int_{0}^{1} \lambda(t) \frac{f(tz)}{t} dt, \quad f \in \mathcal{A}, \tag{1.4}$$

then for β_{λ} < 1 given by

$$\frac{\beta_{\lambda}}{1-\beta\lambda} = -\int_0^1 \lambda(t) \frac{1-t}{1+t} dt,\tag{1.5}$$

we have for $\beta = \beta_{\lambda} : \mathcal{V}_{\lambda}(\mathcal{P}_{\beta}) \subset \mathcal{S}$ and

$$\mathcal{V}_{\lambda}(\mathcal{P}_{\beta}) \subset \delta^* \Leftrightarrow L_{\lambda}\mathcal{C} = 0.$$

For $\beta < \beta_{\lambda}$ there exists $f \in \mathcal{P}_{\beta}$ with $\mathcal{V}_{\lambda}(f)$ not even locally univalent.

Download English Version:

https://daneshyari.com/en/article/472441

Download Persian Version:

https://daneshyari.com/article/472441

Daneshyari.com