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a b s t r a c t

Fractional directional integrals are the extensions of the Riemann–Liouville fractional in-
tegrals from one- to multi-dimensional spaces and play an important role in extending
the fractional differentiation to diverse applications. In numerical evaluation of these in-
tegrals, the weakly singular kernels often fail the conventional quadrature rules such as
Newton–Cotes and Gauss–Legendre rules. It is noted that these kernels after simple trans-
forms can be taken as the Jacobi weight functions which are related to the weight factors
of Gauss–Jacobi and Gauss–Jacobi–Lobatto rules. These rules can evaluate the fractional
integrals at high accuracy. Comparisons with the three typical adaptive quadrature rules
are presented to illustrate the efficacy of the Gauss–Jacobi-type rules in handling weakly
singular kernels of different strengths. Potential applications of the proposed rules in for-
mulating and benchmarking new numerical schemes for generalized fractional diffusion
problems are briefly discussed in the final remarking section.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recent decades have witnessed a fast growing research on the applications of fractional calculus in diverse science
and engineering fields such as physics [1–3], rheology [4,5], finance [6,7], acoustics [8,9], fractal geometry [10], hydrology
[11–13], etc. In particular, by replacing the second-order derivative with a derivative of fractional order α ∈ (1, 2] in the
conventional advection–diffusion equation, the fractional advection–diffusion equation (FADE) appears to be a promising
tool to describe solute transport in groundwater [11]. Solutions of the FADE are the Lévy-stable motions which can describe
the super-diffusive flow [12]. For modeling problems in higher spatial dimensions, the fractional diffusion operator in the
FADE has been extended to the weighted, fractional directional diffusion operator Dα

M fromwhich the full range of the Lévy-
stable motions can be generated [13].

The mathematical complexity of fractional derivatives often makes the analytical solutions of FADEs inaccessible [14].
Hence, the numerical solution techniques are usually resorted to. To test a numerical method for solving FADE, a reference
solution with defined source term is needed. Take the 2D problem, i.e.

Dα
Mu(x, y) + f (x, y) = 0 (1)

as an example. It is common that the solution u is pre-fixed and the source term f is numerically computed to satisfy
the FADE. With f prescribed, the efficacy of the numerical method can be assessed by comparing its prediction with the
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pre-fixed u. This paper presents a numerical scheme which can compute f to high accuracy for each discrete point in the
computational domain.

Fractional directional integrals are involved in the definition of fractional diffusion term Dα
Mu(x) where u is the solute

concentration and x the position vector. To evaluateDα
M , onemust first calculate the fractional directional integrals. Since the

fractional directional integration of even the most elementary functions may have non-closed form expression, numerical
approximation is often required. The vector Grünward formula [15] is a possible choice. However, its accuracy is only O(h)
where h is the grid size. Integration quadrature is another alternative. Owing to the weakly singular kernel in the integrand
of the fractional directional integral, the conventional quadrature rules such as Newton–Cotes, Gauss–Legendre rule, and its
Kronrod refinement [16] fail to offer adequate accuracy. This constitutes a motivation to seek other quadrature rules which
are more accurate and fast-convergent.

Gauss–Jacobi-type quadrature rules are potentially effective tools to evaluate fractional directional integrals. This type
of rules takes the Jacobi weight function, which defines the orthogonality of the Jacobi polynomials, as the weight function.
For a fractional directional integral, the weakly singular kernel ςγ−1 (γ ∈ (0, 1)) in the integrand can be transformed to
(1 + ξ)γ−1 which becomes a special case of the Jacobi weight function (1 − ξ)µ(1 + ξ)λ for µ, λ > −1. Consequently, the
singularity of the integrand can be effectively removed.

Section 2will discuss the definitions of fractional directional operators and their roles in themulti-dimensional fractional
spatial operators, followed by Section 3 in which Gauss–Jacobi-type rules and their applications to fractional directional
integrals are presented. In Section 4, one- and two-dimensional examples are examined and discussed. Finally, Section 5
remarks on the utility of the proposed rules in formulating and benchmarking numerical schemes for generalized fractional
directional diffusion problems.

2. Fractional directional integrals and their applications

This section first introduces how the fractional directional integrals are extended from conventional n-fold definite
integrals and then defines the fractional directional derivatives. In the last subsection, three typical two-dimensional
fractional spatial operators are mentioned.

2.1. Directional integrals

The Cauchy formula [17] can rewrite the left-sided n-fold definite integral in a convolution form, i.e.

Ina+f (x) =

 x

a

 xn

a
· · ·

 x3

a

 x2

a
f (x1)dx1dx2 · · · dxn−1dxn =

1
Γ (n)

 x

a
(x − ξ)n−1f (ξ)dξ (2)

in which f (x) is defined on [a, b], n is a positive integer and T (z) the gamma function. Similarly, the right-sided integral
reads

Inb−f (x) =

 b

x

 b

xn
· · ·

 b

x3

 b

x2
f (x1)dx1dx2 · · · dxn−1dxn =

1
Γ (n)

 b

x
(ξ − x)n−1f (ξ)dξ . (3)

Applying the transforms ς = ±(x − ξ) to formulas (2) and (3) produces

In0 f (x) =
1

Γ (n)

 x−a

0
ςn−1f (x − ς cos 0)dς, (4)

Inπ f (x) =
1

Γ (n)

 b−x

0
ςn−1f (x − ς cosπ)dς, x ∈ [a, b]. (5)

The subscripts of the above integration operators ‘‘In’’ denote the integration direction θ ∈ [0, 2π). The integration operators
in (4) and (5) can be generalized to rectangular domain

Inθ g(x, y) =
1

Γ (n)

 d(x,y,θ)

0
ςn−1g(x − ς cos θ, y − ς sin θ)dς,

(x, y) ∈ Ω = [a, b] × [c, d], θ ∈ [0, 2π).

(6)

The upper integration limit d(x, y, θ) is termed as the ‘‘backward distance’’ of point (x, y) to ∂Ω along the direction θ =

{cos θ, sin θ}
T , as seen in Fig. 1. Similarly, the directional integral in three-dimensional space can be defined as

Inθ h(x, y, z) =
1

Γ (n)

 d(x,y,z,θ)

0
ςn−1h(x − ςθ1, y − ςθ2, z − ςθ3)dς,

(x, y, z) ∈ Ω = [a, b] × [c, d] × [e, f ], θ = {θ1, θ2, θ3}
T , ∥θ∥2 = 1.

(7)
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