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a b s t r a c t

In this paper, a simple parameter switching (PS)methodology is proposed for sustaining the
stable dynamics of a fractional-order chaotic financial system. This is achieved by switching
a controllable parameter of the system, within a chosen set of values and for relatively
short periods of time. The effectiveness of themethod is confirmed from a computer-aided
approach, and its applications to chaos control and anti-control are demonstrated. In order
to obtain a numerical solution of the fractional-order financial system, a variant of the
Grünwald–Letnikov scheme is used. Extensive simulation results show that the resulting
chaotic attractor well represents a numerical approximation of the underlying chaotic
attractor, which is obtained by applying the average of the switched values. Moreover, it is
illustrated that this approach is also applicable to the integer-order financial system.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Today, many economists still focus on linear dynamics (e.g., using the Hartman–Grobman theorem), thinking of that
nonlinear dynamics are intractable although the economic world is by nature nonlinear. Nevertheless, the intrinsic relation
between chaos theory and finance theory has been widely explored since the pioneering work of Smale in 1953 [1]. As
a result, financial systems are commonly modeled by continuous-time chaotic systems such as the forced Van-der-Pol
model [2], Behrens–Feichtingermodel [3], Cournot–Puumodel [4], IS–MLmodel [5], and so on (see also [6–9] and references
therein). In addition, many recent studies on economics have demonstrated the adverse effect of chaotic dynamics on
economic systems.

Due to the instability of a periodic solution, bifurcation, or other typical phenomena which could appear in chaotic
economic systems, somemeasures and actions are required. Many researchers suggested applying chaos control in financial
systems in order to improve their performances such as preserving stability. Indeed, controlling a chaoticmarketmodelmay
lead to economic efficiency. Therefore, interest in suppressing chaos in economic models has been raised from the scientific
community [10–14].
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In this paper, the study is devoted to the chaotic financial system introduced in [15], which is originally of integer-order,
but has lately being extended to fractional-order in [16]. The system is described by the following differential equations:

dxq11
dtq1

= x3 + (x2 − p)x1,

dxq22
dtq2

= 1 − bx2 − x21,

dxq33
dtq3

= −x1 − cx3,

(1)

where p, b and c are nonnegative coefficients with physical meanings and significance clearly explained in [17]; q =

(q1, q2, q3)T represents the fractional order of the derivatives, in which qi ∈ (0, 1], with qi = 1, i = 1, 2, 3, representing
the integer-order case.

For the integer-order financial system (1), i.e., with qi = 1, i = 1, 2, 3, its local topological structure and bifurcation
have been studied in detail (see [15,17]). For its fractional-order version, the nonlinear dynamics have also been analyzed
in [16,18]. Furthermore, this financial system model has been investigated regarding chaos control and synchronization
in [14,19].

In this paper, we show numerically that any stable attractor of the financial system (1) can be approximated by switching
pwithin a set of chosen values in deterministic and relatively small time intervals. Compared to othermethods, such as OGY-
like schemes, where unstable periodic orbits are ‘‘forced’’ to become stable, here one obtains whatever stable attractor that
is desirable.

The system (1) can be reformulated as the following general initial value problem (IVP):

dq

dtq
x(t) = f (x(t)) = g(x(t)) + pAx(t), x(0) = x0, t ∈ I = [0, T ], (2)

where x : I → R3, g : R3
→ R3 is a continuous nonlinear function, A is a 3 × 3 real constant matrix, and p is a tunable real

parameter to be used for control by switching its values later.
The IVP (2) is useful for describing a large class of well-known dynamical systems of integer-order or fractional-order,

for example the Lorenz, Rössler, Chen, Chua systems, to name just a few.
Referring to (1), one has

g(x) =

 x3 + x1x2
1 − bx2 − x21
−x1 − cx3

 , A =


−1 0 0
0 0 0
0 0 0


.

When q = 1, system (2) corresponds to a classical first-order IVP, which can be numerically solved by standardmethods,
such as Runge–Kutta. On the other hand, for q ∈ (0, 1), system (2) becomes an IVP of fractional-order, presented as fractional
differential equation (FDE). In this case, we consider the fractional derivative operator dq/dtq as being Caputo’s derivative
with starting point t0 = 0, namely,

dq

dtq
x(t) =

1
Γ (1 − q)

 t

0


t − s

−q
x′(s)ds, (3)

where Γ is the Euler gamma function (for basic knowledge on fractional calculus, one may refer to [20–25]). The
use of Caputo’s approach allows coupling the FDE with initial conditions in a classical form as in (2) and, unlike the
Riemann–Liouville (RL) definition

RLDq
0x(t) =

1
Γ (1 − q)

d
dt

 t

0


t − s

−q
x(s)ds,

it avoids the expression of initial conditions with fractional derivatives. However, under the assumption that x is absolutely
continuous, the Caputo and RL definitions are related by a relationship involving the initial condition

dq

dtq
x(t) =

RLDq
0


x(t) − x(0)


(4)

(one can refer to [20] for more insights on this topic and for the extension of the above definitions and relationship to the
case q > 1). Another approach to introduce derivatives of non-integer order is the Grünwald–Letnikov (GL) operator

GLDq
0x(t) = lim

N→∞

h−q
N

N
k=0

ω
(q)
k x(t − khN), hN = t/N, (5)
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