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a b s t r a c t

In this paper, we present the Adomian decomposition method and its modifications com-
bined with convergence acceleration techniques, such as the diagonal Padé approximants
and the iterated Shanks transforms, to solve nonlinear fractional ordinary differential equa-
tions. Two nonlinear numeric examples demonstrate that either the diagonal Padé approx-
imants or the iterated Shanks transforms can efficiently extend the effective convergence
region of the decomposition series solution.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, fractional differential equations, a class of integro-differential equations with singularities, have been
extensively applied in various fields of science and engineering, such as viscoelasticity, anomalous diffusion, biology, control
theory, etc. [1–5].

Several analytical or numerical methods have been previously proposed to solve fractional differential equations,
such as various integral transform methods [2–7] for the linear case, the Adomian decomposition method (ADM) [8–13],
variational iterationmethod [14–16] and orthogonal polynomialmethod [2,17] for the nonlinear case, and various numerical
methods [2–5,18–21] as well as other methods [2–5,22–24].

We say that f (t) is a function of classC, if f (t) is piecewise continuous on (0, +∞) and integrable on any finite subinterval
of (0, +∞). Let f (t) be a function of class C, then the Riemann–Liouville fractional integral of f (t) of order β is defined as

Jβt f (t) =

 t

0

(t − τ)β−1

Γ (β)
f (τ )dτ , β > 0, (1)

where Γ (·) is Euler’s gamma function. We define J0t f (t) = f (t). The fractional integral satisfies the following equality,

Jνt t
µ

=
Γ (µ + 1)

Γ (µ + ν + 1)
tµ+ν, ν ≥ 0, µ > −1. (2)

Let f (t) be a function of class C and α be a positive real number satisfying m − 1 < α ≤ m, m ∈ N+. Then the
Riemann–Liouville fractional derivative of f (t) of order α, when it exists, is defined as

Dα
t f (t) =

dm

dtm

Jm−α
t f (t)


, t > 0. (3)
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Let α be a positive real number, such that m − 1 < α ≤ m, m ∈ N+, and f (m)(t) exist and be a function of class C. Then
the Caputo fractional derivative of f (t) of order α is defined as

Dα
t f (t) = Jm−α

t f (m)(t), t > 0. (4)
For the Caputo fractional derivative of a polynomial function, the following equality holds

Dα
t (a0t

r
+ a1t r−1

+ · · · + ar) = 0, m − 1 < α ≤ m, r ≤ m − 1. (5)
Moreover, the α-order integral of the α-order Caputo fractional derivative satisfies

Jαt Dα
t f (t) = f (t) −

m−1
k=0

f (k)(0+)
tk

k!
, m − 1 < α ≤ m. (6)

For the power function tµ, µ > 0, if 0 ≤ m − 1 < α ≤ m < µ + 1, then we have

Dα
t t

µ
=

Γ (µ + 1)
Γ (µ − α + 1)

tµ−α, t > 0. (7)

The Caputo fractional derivative and the Riemann–Liouville fractional derivative satisfy the following relation,

Dα
t f (t) = Dα

t


f (t) −

m−1
k=0

tk

k!
f (k)(0+)


. (8)

The two fractional derivatives have their respective advantageous features. The model of the initial value problems (IVPs)
involving the Caputo fractional derivatives has a similar form compared to the classicalmodels.We use the Caputo fractional
derivatives to form the fractional differential equations in this work.

In next section, we introduce the ADM and its modifications combined with two common convergence acceleration
methods. Two numeric examples demonstrate the efficacy of our combined techniques in Section 3.

2. The ADM with convergence acceleration techniques

2.1. The ADM and its modifications

The ADM [25–27] is a systematic method to solve both linear and nonlinear functional equations. We consider the IVP
for the nonlinear fractional ordinary differential equation (ODE),

Dλ
t u(t) + f (u(t)) = g(t), 1 < λ ≤ 2, (9)

u(0) = C0, u′(0) = C1, (10)
where f is an analytic nonlinear function and g(t) is the system input.

Applying the fractional integral operator Jλt to both sides of Eq. (9) yields

u(t) = C0 + C1t + Jλt g(t) − Jλt f (u(t)). (11)
We decompose the solution as u(t) =


∞

n=0 un, and then decompose the analytic nonlinearity Nu = f (u(t)) into the series
of the Adomian polynomials

f (u(t)) =

∞
n=0

An, (12)

where the Adomian polynomials An = An(u0, u1, . . . , un) are defined by the formula [25]

An =
1
n!

dn

dλn
f


∞
k=0

ukλ
k


λ=0

, n ≥ 0. (13)

Several algorithms such as in [25,28,27,29] for symbolic programming have since been devised to efficiently generate
the Adomian polynomials quickly and to high orders. New, more efficient algorithms and subroutines in MATHEMATICA
for rapid generation of the Adomian polynomials have been provided by Duan in [30–32]. We list Duan’s Corollary 3
algorithm [32] as follows:

C1
n = un, n ≥ 1,

Ck
n =

1
n

n−k
j=0

(j + 1)uj+1Ck−1
n−1−j, 2 ≤ k ≤ n, (14)

An =

n
k=1

Ck
n f (k)(u0), n ≥ 1.
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