

Available online at www.sciencedirect.com

Computers and Mathematics with Applications 54 (2007) 31–37

An International Journal computers & mathematics with applications

www.elsevier.com/locate/camwa

Some integral inequalities for functions with (n-1)st derivatives of bounded variation

Aimin Xu*, Dezao Cui

Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China

Received 18 November 2005; received in revised form 6 April 2006; accepted 8 May 2006

Abstract

In this paper, we generalize Cerone's results, and a unified treatment of error estimates for a general inequality satisfying $f^{(n-1)}$ being of bounded variation is presented. We derive the estimates for the remainder terms of the mid-point, trapezoid, and Simpson formulas. All constants of the errors are sharp. Applications in numerical integration are also given. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Bounded variation; Appell type polynomial; Bernoulli polynomial; Ostrowski's inequality; Trapezoidal inequality

1. Introduction

In 2000, Cerone, Dragomir and Pearce [1] proved the following trapezoid type inequalities.

Theorem 1. Let $f:[a,b] \to R$ be a function of bounded variation. Then we have the inequality

$$\left| \int_{a}^{b} f(t) dt - [(x - a)f(a) + (b - x)f(b)] \right| \le \left\lceil \frac{b - a}{2} + \left| x - \frac{a + b}{2} \right| \right\rceil \bigvee_{a=0}^{b} (f)$$
(1.1)

for all $x \in [a, b]$, where $\bigvee_{a}^{b}(f)$ denotes the total variation of f on the interval [a, b].

The inequality (1.1) is a perturbed generalization of the trapezoidal inequality for mapping of bounded variation. Using (1.1), Cerone et al. further obtained the following error estimate for the composite quadrature rule.

Theorem 2. Let f be defined as in Theorem 1; then we have

$$\int_{a}^{b} f(t) dt = \sum_{i=0}^{n-1} [(\xi_{i} - x_{i}) f(x_{i}) + (x_{i+1} - \xi_{i}) f(x_{i+1})] + R(f).$$
(1.2)

E-mail address: xuaimin1009@yahoo.com.cn (A. Xu).

^{*} Corresponding author.

The remainder term R(f) satisfies the estimate

$$|R(f)| \le \left[\frac{v(l)}{2} + \max_{i=0,1,\dots,n-1} \left| \xi_i - \frac{x_i + x_{i+1}}{2} \right| \right] \bigvee_{a}^{b} (f) \le v(l) \bigvee_{a}^{b} (f), \tag{1.3}$$

where $v(l) := \max\{l_i | i = 0, 1, ..., n-1\}, l_i = x_{i+1} - x_i \text{ and } \xi_i \in [x_i, x_{i+1}].$

In this paper, following the main ideas of Vinogradov [2], we give a unified treatment of error estimates for a general quadrature rule satisfying $f^{(n-1)}$ being of bounded variation. Using the perturbed inequality, we obtain the error bounds for the mid-point, trapezoid and Simpson quadrature formulas. We also generalize Euler trapezoid formulas [3].

2. The main results

A sequence of polynomials $\{u_k\}_0^\infty$ is called a sequence of Appell type polynomials if $u_0 = 1$, $u_k' = u_{k-1}(k \in \mathbb{Z}_+)$.

Lemma 1. Let $f:[a,b] \to R$ be such that $f^{(n-1)}$ is a function of bounded variation on [a,b] for some $n \ge 1$, $n \in \mathbb{Z}_+$. Moreover, if n = 1, f(t) is continuous at $x, x \in [a,b]$. Suppose that $\{r_k\}$, $\{s_k\}$ are sequences of Appell type polynomials on [a,x) and $\{u_k\}$, $\{v_k\}$ are sequences of Appell type polynomials on (x,b]. Let $m \in N$, $m \le n$,

$$k_n(x,t) = \begin{cases} p_n(t) = r_{n-m}(t)s_m(t), & t \in [a,x); \\ q_n(t) = u_{n-m}(t)v_m(t), & t \in (x,b]. \end{cases}$$

Then we have the following equality.

$$\begin{split} &\int_{a}^{b} f(t) \, \mathrm{d}t - \frac{(-1)^{n}}{C_{n}^{m}} \int_{a}^{b} k_{n}(x,t) \, \mathrm{d}f^{(n-1)}(t) \\ &= \begin{cases} \frac{1}{C_{n}^{m}} \sum_{k=0}^{n-1} (-1)^{n-1-k} \left[q_{n}^{(k)}(b) f^{(n-1-k)}(b) \right. \\ &- q_{n}^{(k)}(a+) f^{(n-1-k)}(a) \right], & x = a; \end{cases} \\ &= \begin{cases} \frac{1}{C_{n}^{m}} \sum_{k=0}^{n-1} (-1)^{n-1-k} \left[(p_{n}^{(k)}(x-) - q_{n}^{(k)}(x+)) f^{(n-1-k)}(x) \right. \\ &+ q_{n}^{(k)}(b) f^{(n-1-k)}(b) - p_{n}^{(k)}(a) f^{(n-1-k)}(a) \right], & x \in (a,b); \\ \frac{1}{C_{n}^{m}} \sum_{k=0}^{n-1} (-1)^{n-1-k} \left[p_{n}^{(k)}(b-) f^{(n-1-k)}(b) \right. \\ &- p_{n}^{(k)}(a) f^{(n-1-k)}(a) \right], & x = b, \end{split}$$

where $C_n^m = \frac{n!}{m!(n-m)!}$

Proof. Integrating by parts in the sense of Riemann and Stieltjes, we can easily obtain Lemma 1.

Remark 1. Actually, $f^{(n-1)}$ is continuous if it is of bounded variation when n > 1. If $k_1(x, t)$ is continuous at x, we can weaken the conditions of Lemma 1. In this case, it is not necessary that f(t) is continuous at x.

Theorem 3. Let f be defined as in Lemma 1. Suppose that $m \in N$, $n \in Z_+$, $m \le n$ and $\lambda \in [0, 1]$. Then we have

$$\left| \int_{a}^{b} f(t) dt - \frac{1}{C_{n}^{m}} \sum_{j=0}^{n-1} \left[\sum_{i=L}^{U} C_{j}^{i} C_{n-j}^{n-m-i} (1-\lambda)^{m-j+i} \right] \frac{(b-x)^{n-j} - (a-x)^{n-j}}{(n-j)!} f^{(n-1-j)}(x) - \frac{1}{C_{n}^{m}} \sum_{j=n-m}^{n-1} C_{j}^{n-m} \lambda^{n-j} \frac{(x-a)^{n-j} f^{(n-1-j)}(a) - (x-b)^{n-j} f^{(n-1-j)}(b)}{(n-j)!} \right|$$

Download English Version:

https://daneshyari.com/en/article/472568

Download Persian Version:

https://daneshyari.com/article/472568

Daneshyari.com