Contents lists available at ScienceDirect

CrossMark

Earth-Science Reviews

journal homepage: www.elsevier.com/locate/earscirev

The behaviour of deformable and non-deformable inclusions in viscous flow

Fernando O. Marques ^{a,*}, Nibir Mandal ^b, Rui Taborda ^c, José V. Antunes ^d, Santanu Bose ^e

^a University of Lisbon, Lisboa, Portugal

^b University of Jadavpur, Kolkata, India

^c University of Lisbon and IDL, Lisboa, Portugal

^d University of Lisbon, Applied Dynamics Laboratory, Instituto Superior Técnico, Campus Tecnológico e Nuclear de Sacavém, Portugal

e University of Calcutta, Kolkata, India

ARTICLE INFO

Article history: Received 29 October 2012 Accepted 8 March 2014 Available online 27 March 2014

Keywords: Simple and pure shears Inclusion rotation Confinement Slip Shape preferred orientation Experimental analogue Analytical and numerical modelling Matrix rheology

ABSTRACT

Many are the situations in Geology in which non-deformable and deformable inclusions are carried about in suspension by the motion of a fluid, or a rock behaving like a fluid. Therefore, it is of crucial importance to Geosciences to understand the rotational behaviour of inclusions in viscous flow, and the effects in the matrix deformation. A major step was given by Jeffery (1922), who provided approximate analytical solutions that have been extensively used to describe how rigid spheroids rotate in homogeneous flows. He considered isolated inclusions in no-slip contact with an infinite width matrix. However, in a great variety of geological processes, flow can be confined, the inclusion can deform, the inclusion/matrix interface can be slipping, or inclusions can interact with neighbours. By analytical, experimental analogue, and numerical modelling it has been shown how inclusions rotate, how the surrounding matrix flows, how pressure and velocity control rigid inclusion behaviour, and how the models can be applied to geological processes. Modelling has shown that: (1) for wide channels (ratio W_r of channel width over inclusion least axis length >10) and non-slipping interface, results agree with Jeffery's model, while for narrow channels ($W_r < 5$) or slipping interface the results deviate greatly from Jeffery's model. (2) For narrow channels or slipping interface, inclusions with aspect ratio A_r (greatest over least principle axis) >1 can rotate backwards (antithetic rotation, against flow vorticity) from an initial orientation $\phi = 0^{\circ}$ (greatest principle axis parallel to the shear plane), in great contrast to Jeffery's model. (3) Back rotation is limited because inclusions reach a stable equilibrium orientation (ϕ_{se}) at shallow positive angles ($0^{\circ} \le \phi < 90^{\circ}$). (4) There is also an unstable equilibrium orientation (ϕ_{ue}), which defines an antithetic rotation field with ϕ_{se} , and both ϕ_{se} and ϕ_{ue} depend on confinement and inclusion aspect ratio and shape. (5) The flow around rigid inclusions is greatly perturbed by confinement or slipping interface, and a new flow pattern (cat eyes-shaped) has been described. (6) The numerical models provide detailed and coherent information about the physical parameters involved in the process (e.g. pressure and velocity distributions within the model), which helps to explain inclusion behaviour. (7) The existing models can be used to quantify important parameters that characterise ductile shear zones.

© 2014 Elsevier B.V. All rights reserved.

Contents

1.	Introd	uction
	1.1.	Rationale
	1.2.	Rotational motion of rigid inclusions: the classical theory
	1.3.	Flow type – pure, simple and general shears
	1.4.	Matrix rheology and anisotropy
	1.5.	Bulk rheology of inclusion-matrix composites
	1.6.	Deformation of inclusions
	1.7.	Deviations from Jeffery's theory
	1.8.	Matrix flow patterns around rigid inclusions

* Corresponding author. Tel.: +351 217500000; fax: +351 217500064. *E-mail address:* fomarques@fc.ul.pt (F.O. Marques).

	1.9.	Population	ons of rigid inclusions.	26
	1.10.	Shear set	nse analysis	27
	1.11.	Inclusion	n rotation vs non-rotation	28
	1.12.	Inclusion	ns in rock experiments	28
2.	Model	lling proce	edure	28
	2.1.	Experim	ental analogue modelling	28
		2.1.1.	Modelling materials, reference frames and boundary conditions	28
	2.2.	Numeric	al modelling, mathematical formulation and boundary conditions.	29
3.	Mode	lling result	ts	31
	3.1.	Rigid inc	lusion rotation	31
		3.1.1.	Confined flow.	31
		3.1.2	Slipping interface unconfined flow	33
		313	Slipping interface confined flow	35
		314	Interacting inclusions with slinning interface	36
	3.2	Flow in t	The matrix	37
	J.2.	221	Confined flow	37
		2.2.1.	Climing interface	30
).2.2. 2.7.2	Suppling interface	/1
		2.2.2. 2.2.4	Effects of non-nuclai sheat.	41
	~	Droccuro		41
	3.3.	Pressure	· · · · · · · · · · · · · · · · · · ·	42
		3.3.1.		42
	A 1'	3.3.2.	Supping interface	43
4.	Applic	cation of ir	Iclusion behaviour models to natural ductile snear zones.	43
	4.1.	The Nord	afjord-Sogn Detachment Zone (NSDZ) of the Caledonides of Western Norway	44
	4.2.	Collectio	n of held data	44
	4.3.	Applicati	100	44
		4.3.1.	Site 1, Gjervika, Atløy	44
		4.3.2.	Site 2, Sandane, Nordfjord	45
		4.3.3.	Site 3, Biskjelneset, Nordfjord.	47
		4.3.4.	Boudin marked 1 in	48
		4.3.5.	Boudin marked 2 in	48
	4.4.	Discussio	on	48
		4.4.1.	Site 1, Gjervika	48
		4.4.2.	Site 2, Sandane	49
		4.4.3.	Site 3, Biskjelneset.	50
5.	Discus	ssion		50
	5.1.	Why inc	lusions rotate the way they do	50
		5.1.1.	The source of difficulty.	52
		5.1.2.	Numerical results and discussion	54
		5.1.3.	Conclusions	54
	5.2.	Rotation	al behaviour in slipping mode	55
		5.2.1.	Comparison of analogue, numerical and analytical models.	56
		5.2.2.	The void conjecture	57
	5.3.	Flow in t	the matrix	57
		5.3.1.	Confined. no-slip	57
		5.3.2.	Slip. unconfined	58
		533	Tails	59
6	Conclu	usion		60
7	Persne	ectives		60
Anne	ndiv A			60
whhe	Παιλ Π	Δ1	Retational motion of rigid inclusions: the classical theory	60
		Δ 3	Flow two = nure simple and reneral charse	61
		Δ2	Notivity to hology	62
		Δ 1	Madina Interrogy	64
		л. 4 .		04
Defe		л.э.		00
Kelel	ences	• • • •		00

1. Introduction

1.1. Rationale

A wide variety of geological materials such as rocks, magmas and glaciers show a composite behaviour due to the presence of mechanically contrasting objects suspended in a continuous ductile matrix. Therefore, the investigation of the kinematic behaviour of inclusions in viscous flow is a fundamental step towards the understanding of the basic physics of such inclusion–matrix composites, hence of many geological processes. The ductile matrix behaves macroscopically as a viscous fluid in many situations, and the viscosity can vary widely in geological materials. The common low-viscosity fluids are air, liquid water and magma (especially silica-poor, flowing through the lithosphere or as lava flows at the Earth's surface). In contrast, rocks and glaciers can behave as high-viscosity fluids under geological conditions, and their viscosities are many orders of magnitude higher than those of water or magma. All these low- or high-viscosity fluids carry rigid or deformable inclusions in suspension, and the suspended materials can rotate and affect the rheology of the enclosing medium during flow (e.g. Einstein, 1906). Therefore, the understanding of the rotational behaviour of inclusions in the flowing matrix and of the bulk rheology of

Download English Version:

https://daneshyari.com/en/article/4725896

Download Persian Version:

https://daneshyari.com/article/4725896

Daneshyari.com