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a b s t r a c t

In this paper, the Chebyshev polynomials to solve analytically the fractional neutron
transport equation in one-dimensional plane geometry are used. The procedure is based
on the expansion of the angular flux in terms of the Chebyshev polynomials. The obtained
system of fractional linear differential equation is solved analytically by using fractional
Sumudu transform.
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1. Introduction

In the literature, there are several integral transforms widely used in physics, astronomy as well as in engineering. In [1],
Watugala introduced a new transform and named as Sumudu transform which is defined over the set of functions

A =

f (t) : ∃M, τ1, τ2 > 0, |f (t)| < Met/τi , if t ∈ (−1)i × [0, ∞)


(1.1)

by the following formula:

G(u) = S [f (t); u] =:

∫
∞

0
f (ut)e−tdt, u ∈ (−τ1, τ2) . (1.2)

Since then this new transform has been applied to several problems ranging from ordinary differential equations to the
problems in control engineering; see [2,3,1]. In [4], some fundamental properties of this transform were established.

In [5], the transform was extended to the distributions(generalized functions) and some of their properties were also
studied in [6,7]. Recently Kılıçman et al. have applied this transform to solve the system of differential equations; see [8]. The
inversion of the transformed coefficients is obtained by using Trzaska’smethod [9] and the Heaviside expansion technique.

In one of our recentwork, we have presented a new approximation for solving the one dimensional transport equation by
combining the Chebyshev polynomials and Sumudu transform [10]. The approachwas based on the expansion of the angular
flux in a truncated series of Chebyshev polynomials in the angular variable. Similarly, the present authors considered a
method for the solution of the neutron transport equation in three-dimensional case by using theWalsh function, Chebyshev
polynomials and the Legendre polynomials as well as the Tau method; see [11]. Similarly, the fractional transform was
applied to the Maxwell equations by using the spatial function coefficients; see [12,13].

This work is devoted to the study of the fractional neutron transport equation in one-dimensional plane geometry by
using the Chebyshev polynomials. The procedure is based on the expansion of the angular flux in terms of the Chebyshev
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polynomials. Then the resulting system of fractional linear differential equation is solved analytically by using a fractional
Sumudu transform. The paper is organized as follows. Section 2 contains preliminaries, and Section 3 describes how to
convert a transport equation into FDE; in Section 4, we report specifications and application of the method.

Let us consider the following mono-energetic 3-D transport equation:

Ω.∇(r, Ω) + σtΨ (r, Ω) =

∫
4π

σs(Ω, Ω ′)Ψ (r, Ω ′)dΩ ′
+

1
4π

Q (r) (1.3)

Ω = (η, ξ) = angular variable, (1.4)
and

σs(µ0) =

∞−
k=0

2k + 1
4π

σskPk(µ0) = differential scattering cross section, (1.5)

with µ0 = Ω.Ω ′ and Pk = the kth Legendre polynomial.

2. Preliminaries

We enlist some definitions and basic results [14–16].

Definition 1. A real function f (x), x > 0 is said to be in the space Cα,α∈R if there exists a real number p(> α), such that
f (x) = xpf1(x) where f1(x) ∈ C[0, ∞). Clearly Cα ⊂ Cβ if β ≤ α.

Definition 2. A function f (x), x > 0 is said to be in space Cm
α , m ∈ N ∪ {0}, if f (m)

∈ Cα .

Definition 3. The (left sided) Riemann–Liouville fractional integral of order µ > 0, of a function f ∈ Cµ, µ ≥ 1 is defined
as:

Iµf (t) =
1

Γ (µ)

∫ t

0
(t − τ)µ−1f (τ )dτ , µ > 0, t > 0, (2.1)

I0f (t) = f (t).

Definition 4. The (left sided) Riemann–Liouville fractional derivative of f , where f ∈ Cm
−1, andm ∈ N ∪ {0} of order µ > 0,

is defined as:

Dµf (t) =
dm

dtm
Im−µf (t), m − 1 < µ ≤ m, m ∈ N. (2.2)

Since the Riemann–Liouville approach to the fractional derivative began with an expression for the repeated integration
of a function, an alternative fractional derivative was introduced by Caputo in [17], and produces a derivative that has
different properties: it produces zero from constant functions and, more importantly, the initial value terms of the Laplace
transform are expressed by means of the values of that function and of its derivative of integer order rather than the
derivatives of fractional order as in the Riemann–Liouville derivative.

Definition 5. The (left sided) Caputo fractional derivative of f , f ∈ Cm
−1, and m ∈ N ∪ {0} of order µ > 0, is defined as:

Dµ
c f (t) =



Im−µf (m)(t)


m − 1 < µ ≤ m, m ∈ N,

dm

dtm
f (t) µ = m.

(2.3)

Note that the relation between the Riemann–Liouville and Caputo fractional derivatives can be given as follows.
(i) Iµtγ =

Γ (γ+1)
Γ (γ+µ+1) t

γ+µ, µ > 0, γ > −1, t > 0.

(ii) IµDµ
c f (t) = f (t) −

∑m−1
k=0 f (k)(0+) tk

k! , m − 1 < µ ≤ m, m ∈ N∗.

(iii) Dµ
c f (t) = Dµ


f (t) −

∑m−1
k=0 f (k)(0+) tk

k!


, m − 1 < µ ≤ m, m ∈ N∗.

(iv) Dβ Iµf (t) =


Iµ−β f (t) if µ > β,
f (t) if µ = β,

Dβ−µf (t) if µ < β,

(v) Dµ
c Dmf (t) = Dµ+mf (t), m = 0, 1, 2, . . . , m − 1 < µ < m,

see [18].

From here on, we will use Cγ ([a, b])(γ ∈ R) to denote the Banach space

Cγ ([a, b]) =

g(x) ∈ C((a, b]) : ‖g‖Cγ = ‖(x − a)γ g(x)‖C < ∞


. (2.4)

In particular, C0([a, b]) represents the space of continuous functions in [a, b], that is, C([a, b]).
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