Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On (ψ,ϕ) -weakly contractive condition in partially ordered metric spaces

Wasfi Shatanawi^a, Bessem Samet^{b,*}

^a Department of Mathematics, Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan ^b Université de Tunis, Ecole Supérieure des Sciences et Techniques de Tunis, 5, Avenue Taha Hussein-Tunis, B.P.:56, Bab Menara-1008, Tunisie

ARTICLE INFO

Article history: Received 4 January 2011 Received in revised form 20 June 2011 Accepted 9 August 2011

Keywords: Weakly contractive condition Altering distance function Weakly increasing Common fixed point Coincidence point Partially ordered set

1. Introduction

ABSTRACT

Recently, Heman Kumar Nashine and Bessem Samet [H.K. Nashine, B. Samet, Fixed point results for mappings satisfying (ψ, ϕ) -weakly contractive condition in partially ordered metric spaces, Nonlinear Anal. 74 (2011) 2201–2209] studied some coincidence fixed point and common fixed point theorems for two mappings satisfying (ψ, ϕ) -weakly contractive condition in an ordered complete metric space. In the present paper, we study some coincidence fixed point and common fixed point theorems for three mappings *S*, *T* and *R* satisfying (ψ, ϕ) -weakly contractive condition in an ordered complete metric space. In the present paper, we study some coincidence fixed point and common fixed point theorems for three mappings *S*, *T* and *R* satisfying (ψ, ϕ) -weakly contractive condition in an ordered complete metric space, where the mappings *S* and *T* are assumed to be weakly increasing with respect to *R*. Our results generalize several well-known results in the literature.

© 2011 Elsevier Ltd. All rights reserved.

The Banach contraction mapping principle [1] is a very popular tool for solving existence problems in many branches in mathematical analysis. Generalization of the Banach principle has been a heavily investigated branch of research; see [2–12]. In particular, there has been a number of works involving altering distance functions. There are control functions which alter the distance between two points in a metric space. Such functions were introduced by Khan et al. [13].

Definition 1.1 (*Altering Distance Function*, [13]). A function $\phi : [0, +\infty) \rightarrow [0, +\infty)$ is called an altering distance function if the following properties are satisfied:

(i) ϕ is continuous and nondecreasing, (ii) $\phi(t) = 0$ if and only if t = 0.

Khan et al. [13] proved the following theorem.

Theorem 1.1. Let (X, d) be a complete metric space, ψ an altering distance function and $T: X \to X$ satisfying

 $\psi(d(Tx, Ty)) \le c\psi(d(x, y))$

for all $x, y \in X$, where 0 < c < 1. Then T has a unique fixed point.

Alber and Guerre-Delabriere [14] introduced the definition of weak ϕ -contraction.

* Corresponding author.

E-mail addresses: swasfi@hu.edu.jo (W. Shatanawi), bessem.samet@gmail.com (B. Samet).

^{0898-1221/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2011.08.033

Definition 1.2 (*See [14]*). A self mapping *T* on a metric space *X* is called weak ϕ -contraction if there exists a function $\phi : [0, +\infty) \rightarrow [0, +\infty)$ such that

$$d(Tx, Ty) \le d(x, y) - \phi(d(x, y))$$

for all $x, y \in X$.

The notion of ϕ -contraction and weak ϕ -contraction has been studied by many authors [15,16,4–6,10,17,12,18]. In [12], the following theorem was proved.

Theorem 1.2 (See [12]). Let (X, d) be a complete metric space. Let $T : X \to X$ be a mapping such that for all $x, y \in X$,

 $d(Tx, Ty) \le d(x, y) - \phi(d(x, y)),$

where ϕ is an altering distance function. Then T has a unique fixed point.

While Dutta and Choudhury [4] proved the following result.

Theorem 1.3 (See [4]). Let (X, d) be a complete metric space and $T : X \to X$ be a mapping such that for all $x, y \in X$,

 $\psi(d(Tx, Ty)) \le \psi(d(x, y)) - \phi(d(x, y)),$

where ψ and ϕ are both altering distance functions. Then T has a unique fixed point.

In recent years, many results appeared related to fixed point theorems in a complete ordered metric space. Ran and Reurings [11] extended the Banach contraction principle in partially ordered sets with some applications to linear and nonlinear matrix equations. While Nieto and Rodríguez-López [7] extended the result of Ran and Reurings and applied their main theorems to obtain a unique solution for a first order ordinary differential equation with periodic boundary conditions. Bhaskar and Lakshmikantham [19] introduced the concept of a mixed monotone mappings and obtained some coupled fixed point results. Also, they applied their results on a first order differential equation with periodic boundary conditions. Further improvements of Bhaskar and Lakshmikantham results were found independently as example in [20–30].

Harjani and Sadarangani [5,6] obtained some fixed point theorems in a complete ordered metric space using altering distance functions. They proved the following theorems.

Theorem 1.4 (See [6]). Let (X, \leq) be a partially ordered set and suppose that there exists a metric d in X such that (X, d) is a complete metric space. Let $f : X \to X$ be a continuous and nondecreasing mapping such that

 $\psi(d(fx, fy)) \le \psi(d(x, y)) - \phi(d(x, y))$

for comparable $x, y \in X$, where ψ and ϕ are altering distance functions. If there exists $x_0 \leq f(x_0)$, then f has a fixed point.

Theorem 1.5 (See [6]). Let (X, \preceq) be a partially ordered set and suppose that there exists a metric d in X such that (X, d) is a complete metric space. Assume that X satisfies if (x_n) is a nondecreasing sequence in X such that $x_n \rightarrow x$, then $x_n \preceq x$ for all $n \in \mathbb{N}$. Let $f: X \rightarrow X$ be a nondecreasing mapping such that

$$\psi(d(fx, fy)) \le \psi(d(x, y)) - \phi(d(x, y))$$

for comparable $x, y \in X$, where ψ and ϕ are altering distance functions. If there exists $x_0 \leq f(x_0)$, then f has a fixed point.

Recently, Nashine and Samet proved the following results.

Theorem 1.6 (See [10]). Let (X, \leq) be a partially ordered set and suppose that there exists a metric d on X such that (X, d) is a complete metric space. Let $T, R : X \to X$ be given mappings such that for all $x, y \in X$ with Rx and Ry are comparable, we have

 $\psi(d(Tx, Ty)) \le \psi(d(Rx, Ry)) - \phi(d(Rx, Ry)),$

where ϕ and ψ are altering distance functions. Assume that T and R satisfy the following hypotheses:

(i) T is weakly increasing with respect to R,

(ii) $TX \subseteq RX$,

(iii) T and R are continuous,

(iv) the pair $\{T, R\}$ is compatible.

Then T and R have a coincidence point, that is, there exists $u \in X$ such that Ru = Tu.

Theorem 1.7 (See [10]). Let (X, \leq) be a partially ordered set and suppose that there exists a metric d on X such that (X, d) is a complete metric space. Let $T, R : X \to X$ be mappings such that for all $x, y \in X$ with Rx and Ry are comparable, we have

 $\psi(d(Tx, Ty)) \le \psi(d(Rx, Ry)) - \phi(d(Rx, Ry)),$

where ϕ and ψ are altering distance functions. Suppose the following hypotheses:

(1)

Download English Version:

https://daneshyari.com/en/article/472610

Download Persian Version:

https://daneshyari.com/article/472610

Daneshyari.com