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a b s t r a c t

Designing an acoustic drum can be categorized into a class of eigenvalue optimization
problems in the structural engineering area. In this paper, we propose an algorithm that
is based on the Gâteaux derivative of the objective function with respect to the density
functions and analyze our algorithm in detail. In the algorithm, we deal with the geometry
constraint by exchanging the densities of two domains occupied by two kinds of different
materials. Finally we apply this algorithm to some practical examples frequently used by
the researchers and present some numerical results to show its feasibility, stability and
efficiency.
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1. Introduction

In this paper, we mainly solve a class of problems on designing an acoustic drum in the structure engineering design
area. This class of problems can be modeled by the equation

−1u = λρ(x)u, x ∈ Ω

u = 0, x ∈ ∂Ω,
(1)

where Ω ⊆ R2 (or R3), denoting the head of a drum, is a convex, bounded and connected closed domain, and the function
ρ(x) : Ω → R denotes the density of the drum. In general, the drum is made up of m different kinds of materials with the
i-th kind of material’s density ci (i = 1, 2, . . . ,m) and 0 < c1 < c2 < · · · < cm.

This class of problems generally involves some geometrical constraints or other ones. If we let Ωi = {x ∈ Ω|ρ(x) =

ci} (i = 1, 2, . . . ,m), then the geometrical constraints can be described as
m

i=1 Ki = |Ω| with |Ωi| = Ki > 0, where | · |

is the area of a domain and Ki is a preassigned number, i = 1, 2, . . . ,m. For the sake of convenient description, we denote
by Ad(Ω) the set of density functions ρ that satisfy the geometrical constraints. This model can also be used to determine
the shape of vibrating membranes which is comprised of different materials [1–3] or to devise the lightest structure with
certain compliance constraint [4], and can be solved by finding the optimal function ρ(x) ∈ Ad(Ω).

Whenm = 2, it is derived by Cox [5,6] that the weak form of Eq. (1)
Ω

∇u · ∇vdx =


Ω

λρuvdx, ∀v ∈ H1
0 (Ω) (2)

has a sequence of nontrivial eigenvalues
0 < λ1(Ω, ρ) < λ2(Ω, ρ) ≤ · · · → ∞, (3)

where that the eigenvalue λ1 is simple, or, that the first two eigenvalues λ1 and λ2 are distinct is proved in Lemma 3.6 of [5].
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To let our solutionmake sense, we assume thatλ1 is simple and take the assumption in [7] thatλ2 is separated fromλ3 for
Ω with any composition. When we say the density function ρopt ∈ Ad(Ω) is optimal, we mean that it is the corresponding
solution to the following three problems

(I) λ1(ρopt) = max
ρ∈Ad(Ω)

λ1(ρ);

(II) λ1(ρopt) = min
ρ∈Ad(Ω)

λ1(ρ);

(III) λ2(ρopt) − λ1(ρopt) = max
ρ∈Ad(Ω)

{λ2(ρ) − λ1(ρ)}.

(4)

This class of problems is hard to solve because of the lack of the topology information of the optimal shape, and theremust
be a good mechanism to express the composition of materials. The mostly used techniques now are the homogenization
method [8,9], the level set method [10] and so on.

Form = 2, algorithms in the existing literature for this class of problems can be categorized into two classes. Algorithms
of the first class are to transform the original constrained optimization problem into an unconstrained one by means of the
Lagrangianmultipliermethod or the augmented Lagrangianmethod. Osher and Santosa [7] employed the conventional level
set method proposed in [10], the variational level set calculus presented in [11], and the projected gradient method used
in [12], to construct an efficient algorithm for three aforementioned problems in 2D. Haber [13] combined the reduced
Hessian sequential quadratic programming method with multilevel continuation technique to put forward a rapid and
robust algorithm to maximize or minimize λ1 in 2D and 3D, and approximated the eigenvalue equation with the inverse
iteration method instead of solving a generalized matrix eigenvalue problem in each iteration. Strang and Persson [14] took
the finite element method to solve the first two problems in (4) when the domain Ω is irregular in 2D.

As pointed out in [15–19], the level set method which only involves the shape sensitivity may get stuck at shapes with
fewer holes than the optimal geometry in some applications such as the structure designs. How to avoid the occurrence of
such phenomenon has attracted many researchers’ attentions. He et al. [18] solved a class of shape optimization problems
in 2D by incorporating the topological derivative into the shape derivative based level set methods. Zhu et al. [19] made use
of the piecewise constant level set method proposed in [20], the Lagrange multiplier method and the augmented Lagrange
methods to propose three efficient iteration algorithms for three above-mentioned problems and some other optimization
problems. Zhu et al. [21] also used the binary level set method in [22], the Lagrange multiplier method and the augmented
Lagrange methods to propose two effective and robust algorithms.

The second class of algorithms, which are to deal with the geometrical constraints while updating the density function
ρ, are less common in the literature. Krein [23] considered the least eigenvalue problem when the domain Ω is a disk, he
filled the inner part of the domain with high density material and the remaining parts with low density material. For a
high dimensional case, Cox first proved in [6] that the interface between two kinds of materials lies in a level set of the
eigenfunction of λ1, then proved in [24] that there exists a constant C1 such that

ρ(x) =


ρ1, u1 ≤ C1,
ρ2, u1 > C1,

(5)

where (λ1, u1) is the first eigenpair to Eq. (1), and finally gave an algorithm in [25] to seek the constant C1. Zhang et al. [26]
solved the least eigenvalue problem for the multi-domain and multi-material cases (m ≥ 2) by minimizing the quantity

R(Ω, ρ) =
1

Ω
ρu2dx

. (6)

Zhang et al. [27] proposed two types of greedy algorithmswhich are based on the expression of λ for three above-mentioned
problems. Based on the Rayleigh quotient formulation of eigenvalues, Kao and Su [28] proposed an efficient rearrangement
algorithm to solve minimization and maximization of the k-th eigenvalue (k ≥ 2) and maximization of spectrum ratios of
the second order elliptic differential operator in 2D.

In the paper, for problem (II) in (4), since the eigenvalues of Eq. (1) are positive, we can obtain the minimal value of λ1
by first maximizing −λ1 and then taking the negative of the maximum of −λ1. In such way, these three problems in (4)
can all be solved by maximizing the objective function, and the objective functions are λ1, −λ1 and λ2 − λ1, respectively.
Inspired by the way that Ω is divided into equal-area rectangles in [26], we devise a new algorithm which can be used for
three problems by introducing a different scheme of updating the density function in virtue of the Gâteaux derivative of
the objective functions with respect to the density function and the equal-area subdivision. This updating scheme tries to
keep the increment of the objective function positive before and after updating the density function and make the updated
density function ρ satisfy the geometrical constraint at the same time.We also discuss the effects of the number of triangles
whose densities are changed to the variation of the density function and choose an appropriate value of this number by
trial-and-error method. The algorithm can be categorized into the second class and can get satisfactory approximations in
relatively fewer steps, compared with some algorithms in [19,21,27] for some frequently used numerical examples. When
m = 2, our algorithm is similar to the algorithm in [28], and the differences between these two methods will be discussed
in Remark 3 of Section 2.
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