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Received 13 September 2005; accepted 27 February 2006

Abstract

We establish the mathematical theory for steady and unsteady flows of fluids with discontinuous constitutive equations. We
consider a model for a fluid that at certain critical values of the shear rate exhibits jumps in the generalized viscosity of a power-
law type. Using tools such as Young measures, maximal monotone operators, compact embeddings and energy equality, we prove
the existence of a solution to the problem under consideration. In this approach, Galerkin approximations converge strongly to the
solution of the original problem.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The list of non-Newtonian1 phenomena exhibited by incompressible liquids typically includes (see for example [1]
for their description): (i) shear thinning/shear thickening and/or pressure thickening (these are responses when the
generalized viscosity decreases/increases with increasing shear rate and/or increases with increasing pressure); (ii)
the presence of normal stress differences in a simple shear flow (the response closely connected with effects such as
rod-climbing, die swell, etc.), (iii) viscoelastic responses such as stress relaxation and non-linear creep, and (iv) the
presence of yield stress. We focus mainly on the last of these responses, which can be described as follows:

if |T| ≤ τ ∗ then D(v) = 0,

if |T| > τ ∗ then D(v) 6= 0, and then T = f(D(v)).
(1.1)

Here, v is the velocity, D(v) the symmetric part of the velocity gradient ∇v, T denotes the Cauchy stress, τ ∗ is the
threshold value for the magnitude of T, and f stands for any constitutive equation. Note that we can alternatively
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1 A fluid is said to be non-Newtonian if its behaviour cannot be captured by the Navier–Stokes equations.

0898-1221/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2006.02.037

http://www.elsevier.com/locate/camwa
mailto:pgwiazda@hydra.mimuw.edu.pl
http://dx.doi.org/10.1016/j.camwa.2006.02.037


532 P. Gwiazda et al. / Computers and Mathematics with Applications 53 (2007) 531–546

rewrite (1.1) as

if D(v) = 0 then |T| ≤ τ ∗,

if D(v) 6= 0 then |T| > τ ∗, and then T = f(D(v)).
(1.2)

The presence of yield stress is a controversial phenomenon, since it contradicts the standard understanding of what is
meant by a fluid, which is a material that cannot sustain shear stress. Thus a fluid, by its definition, is such a material
that starts to flow immediately after any shear stress is applied, while (1.2) requires that Cauchy stress overshoots the
critical value before the flow starts. We can, however, argue that for small magnitudes of the stress, no flow is visible
within the time scale of normal observation,2 consequently, we can view the model with the yield stress, which is also
an example of a model with discontinuous Cauchy stress, as a possible and reasonable approximation of more realistic
fluid response. We refer to Málek and Rajagopal [1] for a discussion of these issues.

In this article, we deal with the following “generalization” of the constitutive equation (1.2). For a given d∗ > 0,
we have

if |D(v)| < d∗ then T = T1(D(v)) = ν1(|D(v)|2)D(v),

if |D(v)| > d∗ then T = T2(D(v)) = ν2(|D(v)|2)D(v),
if |D(v)| = d∗ then T = ν∗D(v),

(1.3)

where ν∗
∈ [min{ν−

1 , ν+

2 }, max{ν−

1 , ν+

2 }] with ν−

1 := lim|ξ |→d∗− ν1(|ξ |
2) and ν+

2 := lim|ξ |→d∗+ ν2(|ξ |
2).

We justify the model (1.3) using arguments similar to those for the yield stress phenomenon. Once the shear rate
reaches a certain critical value d∗, this critical shear rate initiates series of chemical reactions that, within a very short
time interval, changes the viscosity of the material dramatically. Since this change is significant and also very quick,
it seems acceptable to capture this feature by a constitutive equation of the form (1.3). Note that if νi in (1.3) is of the
form

νi (|ξ |
2) = νoi |ξ |

ri −2, (i = 1, 2)

where νoi > 0 and ri ∈ (1, ∞) are the model characteristics; we talk about power-law fluid response, and (1.3) then
describes the change of one power-law response to another. In this paper, we consider T1, T2 from (1.3) so that they
generalize the power-law constitutive equations in the following sense. We assume that there are fixed parameters
r, q ∈ (1, ∞), positive constants c1, c2, c4, c5 and arbitrary constants c3, c6 such that for all ξ ∈ Rd2

, we have

|T1(ξ)| ≤ c1(1 + |ξ |)r−1,

|T2(ξ)| ≤ c4(1 + |ξ |)q−1,
and

T1(ξ) · ξ ≥ c2|ξ |
r
− c3,

T2(ξ) · ξ ≥ c5|ξ |
q

− c6.
(1.4)

In addition, we assume that T1, T2 are strictly monotone, i.e., for i = 1, 2 we have

(Ti (ξ) − Ti (ζ )) · (ξ − ζ ) > 0 ∀ ξ , ζ ∈ Rd2
, ξ 6= ζ . (1.5)

The motivation for considering the simplified cartoon given in (1.3) comes from the recent article [2], where Anand
and Rajagopal discuss and model the influence of platelet activation on blood rheology. Despite the fact that platelets
constitute only small portion of the blood, they are extremely sensitive to chemical and mechanical changes. At high
shear rates (or high shear stresses), platelets release carried chemical species and a set off chemical reactions. This
results in the formation of platelet aggregates that exhibit significantly different characteristics than the blood did
before the platelet activation process started. In [2] Anand and Rajagopal propose a constitutive equation for blood,
in the framework of rate-type (viscoelastic) incompressible fluid-like materials, which is capable of incorporating
platelet activation resulting in distinctly different material moduli (i.e. the viscosity, relaxation times, etc.) before and
after the activation.

The constitutive equation (1.3) simplifies the model proposed by Anand and Rajagopal in several respects. First of
all, we completely neglect the elastic response exhibited by blood due to the presence of red blood cells, white blood

2 The flow of glaciers, sand, or any other densely packed granular material (modeled as a single continuum) can serve as a good example.
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