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This is the first review of the Australian Precambrian palaeomagnetic database since that undertaken by Idnurm
and Giddings (1988) 25 years ago. In this period the data have almost tripled in number from about 60 to more
than 170 and while some segments of the pole path are now quite well defined, overall the data are sparse. It is
debatable whether the extant rock record amenable to palaeomagnetism is complete enough for full
palaeogeographic histories to be reconstructed. The SWEAT connection is apparently ruled out for Rodinia as
both the 1200 Ma and 1070 Ma poles from (ancestral) Australia and Laurentia disallow it. However, older
palaeopoles do support a SWEAT-like configuration for the pre-Rodinia supercontinent Nuna but the geological
reasoning for SWEAT applies to Rodinia so a Nuna SWEAT is less than gratifying. The concept of a “grand-pole” is
introduced here, which includes all the “key-pole” features but is predicated on the condition that two or more
independent laboratories are in agreement.
Precambrian data from Australia include the oldest palaeopole yet defined, the record of one of the oldest
geomagnetic polarity reversals, the most definitive evidence for low-latitude Neoproterozoic glaciation, the first
study of BIFs and the timing/nature of iron-ore genesis, the most unusual ‘field test’ (impact melt rock and ejecta
horizon host rocks), some of the best examples of complete contact tests and the timing of craton assembly. Some
old caveats that can no longer be ignored, such as corrections for inclination flattening and the permitting of rota-
tions between contiguous intracontinental cratons to bring conflicting palaeopoles into alignment are required.
Care shouldbe exercisedwhen inferring palaeolatitudes fromsedimentary derivedpalaeoinclinations. TPWshould
only be considered if there is evidence frommore than one, and preferably more, independent continents. Future
work identified includes a complete magnetostratigraphic study of ~300 my Adelaidean succession, better age
constraints for the Adelaidean and Officer Basin successions and a better age for the Gawler Craton GB dykes.

Crown Copyright © 2013 Published by Elsevier B.V. on behalf of International Association for Gondwana
Research. All rights reserved.
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1. Introduction

The first palaeomagnetic study of Australian Precambrian rocks was
undertaken during the early years of palaeomagnetism by Irving and
Green (1958). They studied oriented samples of the Nullagine Lavas,
now called the Fortescue Volcanics (Mount Roe Basalts), from the
Pilbara, the Edith River Volcanics (now the Plum Tree Creek Volcanics,
part of the Edith River Group) from theMcArthur Basin and the Buldiva
quartzite (now part of the Tolmer Group) fromArnhem Land.While the
palaeomagnetism of the Mount Roe Basalt and the Plum Tree Creek
Volcanics has been re-studied since, and their ages better defined
stratigraphically and geochronologically, the original observations
have stood the test of time in the sense that the early pole positions
remain valid. Briden (1967) undertook a palaeomagnetic study of Late
Precambrian Adelaidean strata from the southern end of the Adelaide
Geosyncline (fold belt) but was frustrated by Mesozoic and Tertiary
overprinting evidenced by negative fold tests.

McElhinny and Embleton (1976) reviewed the Proterozoic to Early
Palaeozoic (2500 Ma to 400 Ma) palaeomagnetic data from Australia
and introduced their somewhat less stringent version of ranking poles
than that proposed by Stewart and Irving (1974). The scheme designed
by the latter workers ranked poles between 1 and 3 based on the
palaeomagnetic and age data, and also the timing of remanence relative
to rock age (a perfect score would be 9, although no North American
pole made that grade). McElhinny and Embleton (1976) relented on
the third criterion, the timing of remanence, in a pragmatic step to re-
tain enough Australian data for postulation and debate. They showed
that the polar motion for the Late Proterozoic–Early Palaeozoic period
averaged about 1°/My. They also showed that results from other
Gondwana continents were consistent with the Australian pole path
and therefore argued that the Pan-African (550 ± 100 Ma) orogenic
belts were of ensialic origin. It was also argued that the Australian
data are consistent with a common apparent polar wander (APW)
path back to 2500 Ma,with an averagewander rate of 0.3°/Myr, indicat-
ing that the mobile belts separating the Precambrian cratons of the
Australian shield are ensialic like the Pan-African belts.

The next significant advance in establishing a Precambrian
palaeomagnetic framework for Australia focused on the Neoproterozoic
(McWilliams and McElhinny, 1980). That study showed that the
sigmoidal structural trends of the Adelaide Geosyncline are original
and indicated low latitudes for the late Precambrian glacial deposits in
South Australia, all findings that remain valid today.

A complete reviewof extantAustralianPrecambrianpalaeomagnetism
was provided by Idnurm and Giddings (1988), after they had undertak-
en an extensive palaeomagnetic investigation of Mesoproterozoic units
in Northern Australia, particularly the McArthur Basin and the Pine
Creek Inlier. That study included discussions on the validity of the
Geocentric Axial Dipole (GAD) hypothesis for Precambrian time, the
structural unity of the Australian Precambrian cratons since their

amalgamation, global reconstructions during the Precambrian and fi-
nally the authors questioned uniformitarianismwith regard to Precam-
brian palaeoclimates and palaeolatitudes. All these aspects are revisited
in this current review.

Since 1988 various groups, namely the Australian Geological Survey
Organisation (AGSO), the Tectonics Special Research Centre (TSRC) of
the University of Western Australia, and the Commonwealth Scientific
and Industrial Research Organisation (CSIRO), have continued to make
many contributions to the Precambrian palaeomagnetism of Australia.
In addition, several groups from the USA, Canada, the Netherlands and
Japan have added to the data base. Idnurm (2004) updated the Precam-
brian palaeolatitudes of Australia, incorporating pre-2004 AGSO and
TSRC data although not the late Neoproterozoic data mainly from
CSIRO. It is timely to undertake a new review of Australian Precambrian
palaeomagnetic results.

The Australian content of the Global Palaeomagnetic Database
(GPMDB; McElhinny and Lock, 1996; Pisarevsky, 2005) has been
updated to the end of 2011 (Sergei Pisarevsky, pers. comm., 2012) and
can be downloaded from www.magresearch.org. These data and data
published later in 2012 form the basis of this review (Supplementary
data).

2. Distribution of Precambrian outcrop and sampling localities

Australia is divided into a number of tectonic cratons with the
Archaean and Proterozoic in the western two-thirds and Phanerozoic
terranes in the east (Fig. 1). The boundary between the Precambrian
and the Phanerozoic is referred to as the Tasman Line. This boundary
is mostly obscured by younger rocks and is inferred from gravity and
magnetic lineations. The exact location and geological nature of the
Tasman Line is a source of much debate with some disputing that it is
the margin of Precambrian Australia (Direen and Crawford, 2003;
Kennett et al., 2004).

The Pilbara and Yilgarn cratonswere sutured during a series of orog-
enies beginning with the ca. 2.2 Ga Ophthalmian Orogeny, followed by
the 2.0–1.96 Ga Glenburgh Orogeny and the 1.83–1.78 Ga Capricorn
Orogeny to form the Western Australia Craton which exhibits tectonic
features as old as 3.65 Ga to less than 2.0 Ga (Betts et al., 2002). The
Bangemall Basin formed just after the Capricorn Orogeny during the
Meso–Neoproterozoic. Granite–greenstonebelts of the Yilgarn, the larg-
est Archaean craton in Australia, attest to continental accretion between
3.73 Ga and 2.55 Ga. The Hamersley Basin of the southern Pilbara
contains banded iron-formations (BIF) and shale units from 2.6 to
2.45 Ga deformed during the Ophthalmian Orogeny (Betts et al., 2002).

The McArthur Basin, Kimberley, Arunta and Mt Isa cratons of north-
ern Australia were assembled into the North Australia Craton (Fig. 1)
during the 1.82 Ga Halls Creek Orogeny. The Pine Creek Inlier is partly
of Archaean age (Betts et al., 2002).
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