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a b s t r a c t

In this paper a novel two-dimensional lattice Boltzmannmodel (LBM) is developed for uni-
form channel flows. The axial velocity is solved from amomentum diffusion equation over
the cross-sectional plane. An extrapolation boundary condition is also introduced to en-
hance the no-slip boundary in the momentum equation. This boundary treatment can also
be applied to LBM simulations of other diffusion processes. The algorithm and boundary
treatment are validated by simulations of steady Poiseuille and pulsatile Womersley flows
in circular pipes. The numerical convergence and accuracy are comparable to those of ex-
isting models. Moreover, comparison with general three-dimensional lattice Boltzmann
simulations demonstrates the advantages of our two-dimensional model, including lower
computational resource requirements (memory and time), easier boundary treatment for
arbitrary cross-sectional shapes, and no velocity constraint. These features are attractive
for practical applications with uniform channel flows.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmannmethod (LBM) is a relatively newsimulation technique for complex fluid systems [1–3]. Originating
from classical statistical physics, LBM is a mesoscopic method, in which the fluid is modeled as a collection of pseudo-
particles, and such particles propagate and collide over a discrete lattice domain. Macroscopic continuity and momentum
equations can be obtained from this propagation–collision dynamics through a rigorous mathematical analysis. The
particulate nature and local dynamics provide advantages for complex boundaries and parallel computation. Successful
LBM applications include, to name but a few, those for multiphase flows, biological flows, particulate flows, flows in porous
materials, solid–fluid interfacial phenomena, and electrokinetics and electrohydrodynamics.

Uniform channel flows are commonly found in many industrial applications. In such situations, the transverse velocity
is zero and the axial velocity is independent of the axial position. Traditional numerical methods can easily simplify such
problems by solving them over a two-dimensional (2D) domain, i.e., the channel cross-section. This greatly reduces the
computational demand. However, due to the particular discretization of space and velocity in LBM, three-dimensional (3D)
lattice structures are required to resolve the axial velocity and the cross-sectional shapes even for such uniform channel
flows [4,5]. In addition to the large computation demand, such an approach also raises difficulties in the boundary treatment
for curved surfaces. This has been a weak point of this attractive LBM algorithm when compared to other traditional
computational fluid dynamics methods. Several axisymmetric LBM models [6–9] have been proposed; however, their
applications are limited to circular pipes and are no help for channels with arbitrary, non-circular cross-sectional shapes.

Therefore, in this work, we propose to solve the governing Navier–Stokes equation of fluid dynamics in uniform channel
flows as a convection–diffusion equation for the axial momentum over a 2D lattice space. This algorithm has been proved
by our numerical results with a much lower computational demand (time and memory), easier boundary treatment, and
comparable accuracy as compared to the commonly used 3D LBM models. In addition, the low velocity limit in the general
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Fig. 1. Schematic of a uniform channel with arbitrary cross-sectional shape.

LBM algorithm has been removed. This could be advantageous for reducing the computational time with a larger time step
and for improving the simulation accuracy with a larger velocity range.

2. Theory and model

2.1. Uniform channel flows

In general, the dynamic behaviors of incompressible flows are governed by the continuity
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and the Navier–Stokes equations [10]
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Here, t is time, g = (gx, gy, gz) is the body force, P is the pressure, ρ is the density, and µ is the viscosity. u, v, and w are the
three velocity components in the x, y, and z directions, respectively, in the Cartesian coordinates. For the particular situation
of flows through long, straight, and uniform channels (Fig. 1), there is no transverse velocity in the cross-sectional plane, i.e.,

v = w = 0 (5)
and, according to hydrostatics, the pressure in the cross-sectional plane is adjusted to counterbalance the external force [10]
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In addition, the axial velocity u now is independent of the axial location x:
u = u(y, z, t). (7)

Under such conditions, Eqs. (1), (3) and (4) are automatically satisfied and Eq. (2) is simplified to
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where

Fx = −
∂P
∂x

+ ρgx. (9)

Substituting the fluid momentum
n = ρu (10)

into Eq. (8) and taking ρ = constant for incompressible flows yields
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where ν = µ/ρ is the kinematic viscosity. The above equation can also be considered as a diffusion equation for the axial
momentumn, with Fx as a source termand ν as the diffusion coefficient. Actually ν is also often interpreted as themomentum
diffusion coefficient in fluid mechanics [10].

2.2. The lattice Boltzmann method for solving the diffusion equation

In addition to its applications in simulating fluid systems, LBM has also been employed as a differential equation solver
for other problems, such as those of heat transfer [11], electrical fields [12–14], and convection–diffusion processes [15–18].
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