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a b s t r a c t

In this work, the suitability of the lattice Boltzmannmethod is evaluated for the simulation
of subcritical turbulent flows around a sphere. Special measures are taken to reduce the
computational cost without sacrificing the accuracy of themethod. A large eddy simulation
turbulence model is employed to allow efficient simulation of resolved flow structures
on non-uniform computational meshes. In the vicinity of solid walls, where the flow is
governed by the presence of a thin boundary layer, local grid-refinement is employed in
order to capture the fine structures of the flow. In the test case considered, reference values
for the drag force in the Reynolds number range from 2000 to 10000 and for the surface
pressure distribution and the angle of separation at a Reynolds number of 10000 could be
quantitatively reproduced. A parallel efficiency of 80%was obtained on an Opteron cluster.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the lattice Boltzmann method (LBM) has been established as a method for solving weakly compressible
and incompressible flow problems. The LBM was found to be competitive with traditional methods based on the direct
discretization of the Navier–Stokes equations in a wide range of applications with complex flow physics, including
multiphase flows, suspensions in fluids, and flows in porous media [1–3]. LBM has also been demonstrated to be an
efficient simulation tool for laminar flows [4]. However, the efficiency of LB methods for flow problems around bluff bodies
in the turbulent subcritical regime has not been investigated in depth, which may be due to the fact that parallel LBM
implementations based on turbulence models on non-uniform hierarchical grids require substantial programming effort.
Yet, the efficient simulation of turbulent engineering problems requires the use of non-uniform meshes to resolve the
large velocity gradients in the boundary layer. As a direct numerical simulation (DNS) of technically relevant turbulent
flows is prohibitively expensive, turbulence modeling is required. Two main types of turbulence models have previously
been introduced into the LBM context: Reynolds averaged Navier–Stokes (RANS) type models [5] and large eddy simulation
models (LES) [6]. Additionally, hybrid approaches have been developed, such as the detached Eddy simulation [7]. In RANS
models, a time- or ensemble-averaged velocity is computed and the turbulent features of the flow have to be modeled,
including all of the spatial scales. LES models, on the other hand, apply a spatial low-pass filter to the hydrodynamic fields.
The optimal filter would eliminate only high frequencies in the flow fieldwhile their influence on the large eddies, which are
resolved in the simulation, is modeled. However, the optimal filter could only be defined in Fourier space and, hence, would
require prohibitively large stencils. This is true for the lattice Boltzmannmodel and a classical finite differenceNavier–Stokes
solver alike. However, the simplest possible filter based on shear stress can be implemented very efficiently in the lattice
Boltzmann method because of the local availability of the shear stress in the non-equilibrium part of the distribution
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function. This information can be employed to implement an implicit local low-pass filter also for non-uniform grids at
very low computational cost.

In this article, an efficient implementation of a lattice Boltzmannmethod with LES turbulence modeling on non-uniform
grids is introduced, which allows a relatively simple turbulence modeling to be successfully applied to problems relevant in
engineering. The first part of this article will briefly recall some basic features of the lattice Boltzmann multiple-relaxation-
time method with a subgrid stress model. The second part will deal with extensions of the method for non-uniform grids.
In the third part, the method will be applied to the calculation of some distinct flow features of a sphere in a channel in the
subcritical regime.

2. Lattice Boltzmann method with subgrid stress model (LBM-SGS)

Unlike traditional numerical methods in Computational Fluid Dynamics that apply some discretization technique to
the Navier–Stokes equations, the lattice Boltzmann method is a discretization of the Boltzmann equation in a discrete
velocity space. Its solutions can be shown to converge asymptotically to the solution of the incompressible Navier–Stokes
equation [8]. The starting point for the derivation of the lattice Boltzmann method is a momentum density distribution of
identical particles, f (x, ξ, t). The distribution is discrete in space, velocity space, and time. In the lattice Boltzmann method
the discretization of space, called the lattice, corresponds exactly to the discretization of velocity space, so that a virtual
particle sitting on a node in the lattice moves to a neighboring node in a discrete time step. Hence, interpolation is not
required. The Navier–Stokes equation is found to be the equation of motion for the first moment

∑
i eifi of the momentum

distribution, provided that a sufficiently isotropic velocity set ei is used. A common choice for the lattice Boltzmann velocity
set is the D3Q19 (three dimensions, 19 speeds, cf. Appendix B) model [8]. Its microscopic velocity components correspond
to the third, fifth and seventh rows of the matrix given in Appendix C. The evolution of the lattice Boltzmann model can
be split into two steps: first, free streaming or propagation of the distribution fi according to its respective speed and,
second, collision on the lattice nodes. In order to obtain the Navier–Stokes equation, the collision operator has to fulfill some
conditions concerning conservation laws, Galilean invariance, and dissipation. Still, the collision operator is not uniquely
defined. Different choiceswill have different stability characteristics. In this paper, a version of amultiple-relaxation-time [9]
collision operator is employed. That specific versionwas used in previousworks of the authors (e.g. [10]) and the description
is recapped here.

The lattice Boltzmann model can be written as

fi(t + 1t, x + ei1t) = fi(t, x) + Ωi, i = 0, . . . , b − 1, (1)

where 1t is the time step and the collision operator is given by

Ω = M−1S

(Mf ) − meq . (2)

MatrixM is the transformationmatrix given in Appendix C, composed of the 19 orthogonal basis vectors {8i, i = 0, . . . , b−

1} given in Appendix A, which are orthogonal with respect to a weighted inner product, ⟨8i, 8j⟩w =
∑

k ΦikΦjkwk =

0, if i ≠ j (in contrast to [9], where ⟨8i, 8j⟩ =
∑

k ΦikΦjk ≠ 0, if i ≠ j). The vector w is composed of the weights
{wi, i = 0 . . . , b − 1}:
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
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The momentsm = Mf are labeled as

m = (ρ, e, ϵ, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz,mx,my,mz).

meq is the vector composed of the equilibrium moments given in Eq. (5) and S = {sii, i = 0, . . . , b − 1} is the diagonal
collision matrix. The non-zero collision parameters sii (the eigenvalues of the collision matrix M−1SM) are:

s1,1 = sa
s2,2 = sb
s4,4 = s6,6 = s8,8 = sc
s10,10 = s12,12 = sd (3)

s9,9 = s11,11 = s13,13 = s14,14 = s15,15 = −
1t
τ

= sω
s16,16 = s17,17 = s18,18 = se.

The relaxation time τ is chosen as

τ = 3
ν

c2
+

1
2
1t, (4)

where ν is the kinematic viscosity. The parameters sa, sb, sc, sd and se can be freely chosen in the range [−2, 0] and
tuned to improve stability [11]. While the optimal values for these parameters depend on both the geometry and the
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