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a b s t r a c t

Due to numerical instability, the lattice Boltzmann model (LBM) with the Bhatna-
gar–Gross–Krook (BGK) collision operator has some limitations in the simulation of low
viscosity flows. In this paper, we propose a viscosity counteracting approach for simulat-
ing a moderate viscosity flow. An extra negative viscosity term is introduced to counteract
part of the moderate viscosity by using the lattice Boltzmann equation with a source term.
The counteracting viscosity term is treated as a non-uniform unsteady source. The stabil-
ity is enhanced; thus small viscosity flows can be simulated. Model verification consists
of benchmark cases such as those of Poiseuille flow, Couette flow, waterhammer waves,
Taylor–Green vortex flow, and lid-driven cavity flow. The flow patterns, error characteris-
tics, and representative parameters are carefully analyzed. It is shown that this approach
can simulate flows with lower viscosities than may be simulated using the normal LBGK
model; the second-order accuracy of the LBGK model is definitely retained, although a lit-
tle dissipation is added. These preliminary studies prove the effectiveness and accuracy of
the model. Sophisticated analysis and further verification of the stability mechanism will
be done in the near future.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) is a powerful technique for computational modeling of a wide variety of complex
flow problems [1]. Among the many LBMmodels, the model featuring the Bhatnagar–Gross–Krook (BGK) collision operator
(generally labeled as LBGK, for the lattice Boltzmann BGKmodel, or SRT–LBM, for the single-relaxation-time LBMmodel) [2]
is very popular because of its simple formulation and convenient application. Nevertheless, the LBGK model has some
difficulties in simulating high Reynolds number flow, owing to numerical stability problems in a low viscosity regime.
Though themechanismof LBM’s instability is not totally understood, it is normally attributed to the occurrence of unphysical
negative distribution functions, the interplay between acoustic modes and other modes in a low viscosity regime, improper
treatments of boundary conditions, etc. [3–6]

Many efforts to improve LBM’s stability or to simulate low viscosity flows have been made. McNamara et al. [7] applied
the Lax–Wendroff scheme to enhance the stability of thermal LBM. Qian [8] used upwind interpolation in the fractional
propagation LBM to suppress staggered invariants. Dellar [9] proposed adjusting the bulk viscosity, independently from
the shear viscosity, for better numerical stability. Lallemand et al. [10] and d’Humières et al. [11] developed the multiple-
relaxation-time models (MRT–LBM) to allow the separation of the relaxations of the various physical and kinetic modes,
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obtaining quite good stability features. Ansumali et al. [12] proposed the entropy function based LBM (ELBM) and declared
it to have better stability. Li et al. [5] imposed a lower bound on the relaxation times to ensure positivity of the distributions.
Shu et al. [13] proposed a fractional step LBM scheme for incompressible high Reynolds number flows. Fan et al. [14]
introduced some hyperviscosities to add numerical dissipation into the model. Tosi et al. [15,16] proposed an H-theorem
compliant ELBM by adjusting the local relaxation time of the standard LBM and compared the entropic schemes versus
positivity-enforcing schemes. Brownlee et al. [17–20] proposed positivity preservation, non-equilibrium entropy limiters,
and the Ehrenfest coarse-graining regularization to improve the stability. Niu et al. [21] compared the stability features
of the differential LBM (DLBM) [22], the interpolation-supplemented LBM (ISLBM) [23], and the Taylor-series-expansion
and least-square based LBM (TLLBM)[24], and concluded that the ISLBM and TLLBM improve the numerical stability by
increasing hyperviscosities. Most recently, Ricot et al. [6] proposed spatial filtering on the LBM equation or macroscopic
quantities to eliminate spurious fluctuations. Chen et al. [25] compared the existing four LBM models (LBGK, ELBM, DLBM
and MRT–LBM) and proved that MRT–LBM is the best in accuracy, stability, and efficiency. These studies are very insightful
for understanding the instability mechanism and could provide guidance for simulations of low viscosity flows. However, a
simple but effective approach for enhancing LBM’s stability is still needed.

In this paper, we propose a viscosity counteracting approach for improving the LBGK model’s stability in a low viscosity
regime.Wewill give a brief description of the approach in Section 2, verify it using benchmark cases in Section 3, and finally
conclude the paper in Section 4.

2. Methods

To simulate high Reynolds number flows in finite lattice resolutions, we need to reduce the viscosity to as low a value
as possible. But in small viscosity conditions, instability frequently occurs. Therefore, any means that can reduce viscosity
without introducing instability and additional error is valuable.

The idea of the viscosity counteracting approach is based on the following consideration. The viscosity term in the
Navier–Stokes (N–S) equations is the second-order derivative term. It acts as a dissipation factor and maintains numerical
stability. When the N–S equations are solved by a numerical scheme, the higher order truncation errors also play important
roles in the stability and accuracy. The widely used D2Q9 and D3Q19 models are second-order schemes in space, and some
changes of the third-order or higher terms of truncation errors may be beneficial to their stability.

Therefore, the N–S equations may be expressed as follows:
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in which ν + νc is the viscosity modeled by the LBGK equation, −νc is the counteracting viscosity, and Sij =
1
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will be treated as a forcing term. When a stable viscosity ν + νc is properly chosen,

the simulation results will correspond to the viscosity ν.
To model the inclusion of the counteracting term in the above N–S equations, the LBGK equation should be able to

introduce the forcing term. Here we use the LBGK equation with a source term, as follows [26]:

fα(x + eαδt , t + δt) − fα(x, t) = −
1
τ

[fα(x, t) − f eqα (x, t)] +
δt

2
[gα(x, t) + gα(x + eαδt , t + δt)], (3)

where fα is the particle velocity distribution function along the αth particle velocity direction eα , f eqα the equilibrium
distribution function, gα the forcing term function, τ the relaxation factor, eα the discrete particle vector, x the lattice grid,
and δt the time increment.

The forcing term function gα may take the following form to guarantee second-order convergence for a non-uniform and
unsteady body force and a mass source in the N–S equations [26]:

gα = wα {A + 3B · [(eα − u) + 3(eα · u)eα]} , (4)

in which A is the source term in the fluid continuity equation, B the external forcing term in the momentum equation, and
wα the weighting parameter of distribution functions.

For Eqs. (1) and (2), we just let
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The selection of this method of introducing the forcing term is essential for the feasibility of the proposed approach.
Because the counteracting term is a second-order term, themethod of introducing the forcing termmust be at least a second-
order one. Otherwise, additional second-order dissipations would be added and the results would not be as anticipated.
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