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a b s t r a c t

The bifurcations in a three-variable ODE model describing the oxygen reduction reaction
on a platinum surface is studied. The investigation ismotivated by the fact that this reaction
plays an important role in fuel cells. The goal of this paper is to determine the dynamical
behaviour of the ODE system, with emphasis on the number and type of the stationary
points, and to find the possible bifurcations. It is shown that a non-trivial steady state can
appear through a transcritical bifurcation, or a stable and an unstable steady state can arise
as a result of saddle-node bifurcation. The saddle-node bifurcation curve is determined by
using the parametric representationmethod, and this enables us to determine numerically
the parameter domainwhere bistability occurs,which is important from the chemical point
of view.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

During the development of efficient and reliable fuel cells it is crucial to understand the oxygen reduction reaction (ORR)
on a platinum surface. Several attempts has beenmade to establish the reaction scheme [1–6]; however, no final conclusion
has been reached. Themostwidely used scheme that also serves as a common base for otherswas introduced byDamjanovic
and Brusic [2] and this will be the one that we will use in this paper. The detailed mathematical study of the model can also
help experimental researchers to develop more realistic reaction schemes.

In our model the first step is a fast oxygen adsorption followed by an electrochemical reaction forming an adsorbed O2H
molecule; see the first reaction below. The next step is a chemical reaction between the adsorbed O2H and awatermolecule,
resulting in adsorbed OH species. Finally, the adsorbed OH species are reduced to water in a fast electrochemical step in the
last reaction step. So the reaction scheme reads as follows:

O2 + H+
+ e−

↔ O2H (ads)
O2H (ads) + H2O ↔ 3OH (ads)
OH (ads) + H+

+ e−
↔ H2O.

Let us introduce the variables θ1 and θ2 to denote the relative coverages of the surface with OH and O2Hmolecules, and let θs
denote the number of free surface spaces per surface unit, and c denote the water concentration in the system. The reaction
rates of the above reactions can be given as

v1 = K1θs − L1θ2,
v2 = K2θ2θ

2
s c − L2θ3

1 ,

v3 = K3θ1 − L3θsc,
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where

K1 = k1 exp


−
β1(η − E1)F

RT


, K2 = k2, K3 = k3 exp


−

β2(η − E2)F
RT


L1 = k−1 exp


(1 − β1)(η − E1)F

RT


, L2 = k−2,

L3 = k−3 exp


(1 − β2)(η − E2)F
RT


,

η is the electrode potential, F is Faraday’s constant, R is the universal gas constant, the ki are rate constants, and the βi and
Ei are electrochemical parameters [7].

On the basis of the above reactions, the kinetic equations take the form

θ̇1 = 3v2 − v3, (1)

θ̇2 = v1 − v2, (2)
ċ = v3 − v2 − αc, (3)

where α is a parameter describing the drainage of water. In our previous model [8] the water concentration c was assumed
to be constant, which is a reasonable approximation, leading to the two-dimensional system (1) and (2). The detailed study
of that two-dimensional dynamical system was given in [8], and now our goal is to understand the role of water in the
mathematical model. From the chemical point of view, the amount of water is extremely important since it has a strong
effect on the performance of the fuel cell.

Substituting the expressions for the vi into system (1)–(3), we get the following nonlinear system of ODEs:

θ̇1 = 3K2θ2θ
2
s c − 3L2θ3

1 − K3θ1 + L3θsc, (4)

θ̇2 = K1θs − L1θ2 − K2θ2θ
2
s c, +L2θ3

1 (5)

ċ = K3θ1 − L3θsc − K2θ2θ
2
s c + L2θ3

1 − αc, (6)

where θs = 1 − θ1 − θ2. The goal of this paper is to understand the dynamical behaviour of system (4)–(6).
In Section 2 it is shown how the steady state system can be reduced to a single equation. The number of solutions

of this equation will yield the number of steady states. To find the number of solutions, we will use the parametric
representation method [9,10]. Using this method, the discriminant curve (i.e. the saddle-node bifurcation curve or D-curve)
can be determined analytically. The shape of the D-curve is studied in Section 3. It will be shown that the D-curve belongs
to one of two different classes, leading to two different bifurcation diagrams. In the first case only transcritical bifurcation
may occur, while in the second case saddle-node bifurcation can also be found. The exact condition for the transcritical
bifurcation is given in Section 4, where the non-existence of Hopf bifurcation is also revealed. The possible phase portraits
of the system are summarized in Section 5.

2. Reduction of the steady state system to a single equation

First, let us investigate the steady states of system (4)–(6). The equations defining the stationary points are θ̇1 = 0, θ̇2 = 0
and ċ = 0. Our aim in this section is to reduce this system to a single equation with only one unknown. It turns out that we
get the most convenient form if this unknown is θs. From (1)–(3) we get 3v2 − v3 = 0, v1 − v2 = 0 and v3 − v2 − αc = 0.
The sum of the first and the third equation gives v2 =

αc
2 , so we get v1 =

αc
2 and v3 =

3αc
2 . The definitions of the vi yield

K1θs − L1θ2 =
αc
2

, (7)

K2θ2θ
2
s c − L2θ3

1 =
αc
2

, (8)

K3θ1 − L3θsc =
3αc
2

. (9)

Starting from Eqs. (7), (9) and θs = 1 − θ1 − θ2, a simple calculation shows that

θ1 = P1(θs), θ2 = P2(θs), c = Pc(θs), (10)

where

P1(θs) =
A1(θs)A3(θs)

N(θs)
, P2(θs) =

A2(θs)

N(θs)
, Pc(θs) = 2K3

A3(θs)

N(θs)
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