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a b s t r a c t

This paper investigates the problem reduction heuristic for the Multidimensional Knapsack Problem
(MKP). The MKP formulation is first strengthened by the Global Lifted Cover Inequalities (GLCI) using the
cutting plane approach. The dynamic core problem heuristic is then applied to find good solutions. The
GLCI is described in the general lifting framework and several variants are introduced. A Two-level Core
problem Heuristic is also proposed to tackle large instances. Computational experiments were carried
out on classic benchmark problems to demonstrate the effectiveness of this new method.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Multidimensional Knapsack Problem (MKP) is an extension
of the classic Knapsack Problem (KP) with more than one knapsack
constraints. Given m knapsacks with capacities bi, i¼ 1;…;m, and
n items which require resource consumption of ai;j units in the i-th
knapsack (i¼ 1;…;m), and yield cj units of profit upon inclusion
for item j, j¼ 1;…;n, the goal is to find a subset of items that yields
maximum profit, denoted by zn, without exceeding the knapsack
capacities. The MKP can be defined by the following Integer Linear
Programming (ILP):

ðMKPÞ zn ¼maxfcTx;Axrb; xAf0;1gng ð1Þ

where c¼ ½c1; c2;…; cn�T is an n-dimensional vector of profits, x¼
½x1; x2;…; xn�T is an n-dimensional vector of 0–1 decision variables
indicating whether an item is included or not, A¼ ½ai;j�,
i¼ 1;2;…;m, j¼ 1;2;…;n; is anm� n coefficient matrix of resource
requirements, and b¼ ½b1; b2;…; bm�T is an m-dimensional vector of
resource capacities. It is further assumed that all parameters are
non-negative integers.

The MKP is a well-studied, strongly NP-hard combinatorial
optimisation problem, and has found applications in many prac-
tical areas involving resource allocation. An early review of the
MKP was given by [1], and a comprehensive overview of practical
and theoretical results can be found in the monograph on knap-
sack problems [2]. Excellent reviews on solution methods and
practical applications can be found in [3,4]. In spite of the tre-
mendous progress made by commercial ILP solvers, the methods

currently yielding the best results, at least for commonly used
benchmark instances in [5], are mainly from the specialised
algorithms [6–10]. The main drawback of these approaches is,
however, the huge running time for the large instances in the OR-
Library [11].

Among the fast heuristics aiming for satisfactory solutions, the
core problem based approach has been shown to be very com-
petitive for its simplicity and efficiency. The core concept was first
presented for the classical knapsack problem in [12], and extended
later for MKP in [13]. The main idea is to reduce the original
problem to a core of items for which it is hard to decide whether
or not they will occur in an optimal solution, whereas all variables
corresponding to items outside the core are fixed to their pre-
sumably optimal values. The core problem based heuristics typi-
cally determine an approximate core by calculating some simple
efficiency measures for each variable. Various efficiency measures
were proposed and compared in [14] in terms of core size and
accuracy. It concluded that the core problem heuristic, especially
with the efficiency measures exploiting the dual values of the
Linear Programming (LP) relaxation of MKP, can yield highly
competitive results in significantly shorter run-times. Recently a
new efficiency measure based on the reduced cost of the LP
relaxation of MKP was proposed in [15]. Instead of fixed core sizes
commonly used in previous literature, this novel approach can
adaptively change the core size for each instance. Comprehensive
experimentation demonstrates that this approach performs con-
sistently well on well-designed sets of test cases.

Since the LP relaxation plays an important role in the most
successful core problem based heuristics for MKP, this inspires us
to investigate in this paper the effectiveness of strengthening the
LP relaxation of MKP with valid inequalities, with the hope of
better performance on the hard instances. Although cuts are
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commonly used in the branch and cut algorithms for general ILP
solvers, our application allows for classes of cuts with more
expensive computational costs.

Lifted Cover Inequalities (LCI), among other valid inequalities
for 0–1 knapsack polytopes, have proven useful when tackling
hard 0–1 Integer Programming problems including the MKP
[16,17]. Recently the Global LCI (GLCI) [18] was proposed for MKP
to take into consideration multiple knapsack constraints simulta-
neously by solving LPs to lift the coefficients of a valid inequality.
Although the GLCI may not even define a face of MKP, it can still be
stronger than LCI, especially for MKP with many knapsack con-
straints. Nevertheless the GLCI was not evaluated for the effec-
tiveness in the branch and bound algorithm. In this paper we
apply the GLCI and its variants to MKP, and test the adaptive
problem reduction heuristic in [15] on hard instances of MKP.

The paper is organised as follows. We first describe the pro-
blem reduction method introduced in [15] in Section 2. The
rationale for applying valid inequalities is also discussed. The GLCI
and some variants are described in the framework of general
lifting principles [19] in Section 3. A Two-level Core problem
Heuristic is proposed in Section 4 to tackle large MKP instances.
Computational results are presented in Section 5. The conclusion is
given in Section 6.

2. Problem reduction heuristic strengthened by valid
inequalities

In the core problem reduction heuristic, an efficiency measure e
is employed to rearrange the items into the order ði1; i2;…; inÞ, so
that

eðikÞZeðikþ1Þ ð2Þ
The items with higher efficiency values are regarded to be more
likely included into the knapsacks, and the items with lower
efficiency values are regarded to be more likely excluded from the
knapsacks. An interval ½ae; be� is therefore determined so that xik is
fixed to 1 if ikAF1e ¼ fik j0okoaeg, and xik is fixed to 0 if
ikAF0e ¼ fik jnZk4beg. The remaining undecided items Ce ¼ f
ik jaerkrbeg form the reduced problem defined as

MKPC max z¼
X
jACe

cjxjþ ~z

s:t:
X
jACe

aijxjr ~bi; i¼ 1;…;m

xjAf0;1g; jACe

with ~z ¼P
jA F1e

cj and ~bi ¼ bi�
P

jA F1e
aij, i¼ 1;…;m.

Ce with the smallest cardinality that leads to the optimal
solution to the original MKP by solving the reduced MKPC is called
the core, and the reduced MKPC is called the core problem
accordingly [14].

The exact identification of the core problem requires solving the
MKP to optimality. In practice only an approximate core is calculated
to include hopefully the actual unknown core with high probability.
The core size is a crucial parameter in most core problem heuristics,
which is used to balance the accuracy of the approximate core and
the computational effort required to solve the core problem. It is
typically just a predefined constant in the core based heuristics [20].
Some empirical rules are also suggested in the literature which
normally only depends on the number of items [14].

Recently a novel core based heuristic [15] is proposed which is
based on the Lagrangian relaxation (LR) method. The Lagrangian
relaxation of MKP can be written as

LRðλÞ ¼maxfðc�λTAÞTxþλTb : xAf0;1gng

where λARm
þ are the Lagrangian multipliers associated with the

relaxed knapsack constraints. LRðλÞ provides an upper bound for
the MKP problem, and can be further strengthened by solving the
Lagrangian dual problem

LD¼min
λ

LRðλÞ ð3Þ

which is a non-smooth convex optimisation problem, and can be
solved by the subgradient algorithm [21].

Let λ be the optimal multipliers to LD. The modified profit of
each item in LRðλÞ is

ri ¼ ci�λ
T
ai; i¼ 1;…;n

where ai is the i-th column of A. The set of optimal solutions of
LRðλÞ is

S¼ fxAf0;1gn : ð2xi�1ÞriZ0; i¼ 1;…;ng

Based on the observation that xi tends to be 1 in the optimal
solution of MKP if the modified profit ri takes large positive values,
while it tends to be 0 if it takes large negative values, the efficiency
measure is chosen as

eðiÞ ¼ ri; i¼ 1;…;n ð4Þ

The approximate core is identified as follows. Let rmax ¼maxfj ri j ;
i¼ 1;…;ng. Given ϵARþ , the core interval is defined as

aeðϵÞ ¼maxfkj rik Zϵrmaxgþ1; beðϵÞ ¼minfkj �rik Zϵrmaxg�1

ð5Þ

Therefore the set of variables fixed to 1 is

F1e ðϵÞ ¼ fik j0okoaeðϵÞg ¼ fkj rkZϵrmaxg; ð6Þ

the set of core variables is

CeðϵÞ ¼ fik jaerkrbeðϵÞg ¼ fi; j ri joϵrmaxg; ð7Þ

and the set of variables fixed to 0 is

F0e ðϵÞ ¼ fik jnZk4beg ¼ fkj �rkZϵrmaxg ð8Þ

One unique feature of this core identification approach is that
the core size is not pre-determined and can dynamically adapt to
the characteristics of each instance. This Dynamically reduced Core
Heuristic (DCH) has been comprehensively tested [15] on pro-
blems featuring varied coefficient correlation structures and con-
straint slackness levels. It was found that, by setting ϵ¼0.15, DCH
compared well with other problem reduction heuristics in terms
of solution quality and estimated core problem sizes, and showed
robust effectiveness as problem difficulty increased.

It is well-known [22] that the set of optimal multipliers of LD
coincides with the set of optimal solutions of the dual of the LP
relaxation of MKP:

ðMKP� LPÞ z ¼maxfcTx;Axrb; xA ½0;1�ng ð9Þ

Accordingly, the efficiency measure (4) is just the reduced cost
of each item, which can be efficiently calculated even for large
problems using LP solvers.

Since the LP relaxation can be weak for hard problems, ϵ may
have to be large which results in a large core. Intuitively, if the LP
can be strengthened by valid inequalities, the identification of the
core may be more accurate. Here we will consider the ideal case
where the polytope of MKP-LP, P ¼ fxA ½0;1�n;Axrbg, is the
complete description of the convex hull of the MKP polytope PI ¼
Conv fxAf0;1gn;Axrbg.
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