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a b s t r a c t

Identification of landslide prone areas and production of accurate landslide susceptibility zonation maps
have been crucial topics for hazard management studies. Since the prediction of susceptibility is one of
the main processing steps in landslide susceptibility analysis, selection of a suitable prediction method
plays an important role in the success of the susceptibility zonation process. Although simple statistical
algorithms (e.g. logistic regression) have been widely used in the literature, the use of advanced non-
parametric algorithms in landslide susceptibility zonation has recently become an active research
topic. The main purpose of this study is to investigate the possible application of kernel-based Gaussian
process regression (GPR) and support vector regression (SVR) for producing landslide susceptibility map
of Tonya district of Trabzon, Turkey. Results of these two regression methods were compared with lo-
gistic regression (LR) method that is regarded as a benchmark method. Results showed that while kernel-
based GPR and SVR methods generally produced similar results (90.46% and 90.37%, respectively), they
outperformed the conventional LR method by about 18%. While confirming the superiority of the GPR
method, statistical tests based on ROC statistics, success rate and prediction rate curves revealed the
significant improvement in susceptibility map accuracy by applying kernel-based GPR and SVR methods.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout the history, natural disasters have played a major
role in the economic development and survival of humanity. During
the past decades, natural hazards such as droughts, floods, earth-
quakes and landslides have caused major loss of human lives and
livelihoods, the destruction of economic and social infrastructure,
as well as environmental damages (Sivakumar 2005). Landslides,
one of the most destructive natural disasters affecting a large
number of people and properties, are geological phenomena that
include a wide range of ground movement, such as rock falls, deep
failure of slopes, and shallow debris flow (Nem�cok et al., 1972;
Varnes, 1978; Hutchinson, 1988; Sivakumar 2005; Guzzetti,
2006). Obtaining reliable and accurate information about
landslide-prone areas in terms of susceptibility level and spatial
distribution is essential to ensure the safety of human life and
property. For this reason, determining landslide-susceptible zones
and producing up-to-date landslide susceptibility maps providing

valuable information for government agencies, planners and deci-
sion makers are required for hazard management and prevention
studies.

A hazard zonation map that aims at predicting where slope
failures (or mass movements) are most likely to occur is more
accurately defined as a landslide susceptibility map (Brabb, 1984).
In the production of these maps terrain features together with
geological and climatic conditions of a given area must be consid-
ered in relation to past landslides. The effectiveness of suscepti-
bility assessment is dependent on the method applied to produce
the landslide susceptibility maps, as well as the quality of the data
used. Without a proper evaluation and/or validation, resulting
thematic maps would have a poor scientific value for the decision
makers who cannot perform an adequate economic cost-benefit
analysis to make the proper land-use planning (Chung and
Fabbri, 2003; Trigila et al., 2015).

In recent years, various methods have been applied for landslide
susceptibility mapping for study areas all over the world. These
methods can be categorized as qualitative and quantitative ap-
proaches, also as heuristic, probabilistic, statistical and determin-
istic (Aleotti and Chowdhury, 1999; Pardeshi et al., 2013). A
qualitative approach is based on the subjective judgment of an* Corresponding author.
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expert or a group of experts whereas the quantitative approach is
based on mathematically rigorous objective methodologies
(Neaupane and Piantanakulchai, 2006). To be more specific, the
qualitative approach is based on expert opinion and determining
the weights of criteria (Ayalew et al., 2004; Yalcin, 2008; Kavzoglu
et al., 2014). Quantitative methods are based on numerical ex-
pressions of the relationship between controlling factors and
landslides (Ayalew and Yamagishi, 2005; Akgun and Turk, 2010;
Kavzoglu et al., 2015a). Within the quantitative methods, probabi-
listic and statistical approaches have been widely used to deter-
mine landslide susceptibility levels. The probabilistic models like
frequency ratio, bivariate analysis, and multivariate analysis are
more frequently used to determine the landslide susceptibility
zones (Ahmed, 2014). The logistic regression has been widely used
for landslide susceptibility assessment at local and regional scale
(Atkinson and Massari, 1998; Ayalew and Yamagishi, 2005; Bui
et al., 2011; Althuwaynee et al., 2014; Dou et al., 2015a).

Lately, non-parametric methods, such as random forests, neural
networks and decision trees have been also employed for landslide
susceptibility mapping (G�omez and Kavzoglu, 2005; Catani et al.,
2013; Kavzoglu et al., 2015a; Were et al., 2015). Particularly, sup-
port vector machine, a popular kernel-based machine learning al-
gorithm, has drawn considerable interest in the past few years for
landslide susceptibility mapping due to its robustness and effec-
tiveness in solving complex-structured data sets (Yilmaz, 2010;
Kavzoglu et al., 2014; Goetz et al., 2015). Another kernel-based
machine learning algorithm called Gaussian process regression
has been recently applied to many problems in machine learning
(Pasolli et al., 2010; Hultquista et al., 2014; Stulp and Sigaud, 2015),
but it has very limited use in landslide susceptibility zonation. It is
formulated and interpreted as a Bayesian version of support vector
machine (Rasmussen and Williams, 2006). This study attempts to
evaluate the kernel-based machine learning algorithms, namely
Gaussian process and support vector machine for landslide sus-
ceptibility assessment of a mountainous region facing active land-
slides. Their performances were compared with the result of
logistic regression to evaluate their effectiveness. Well-known
statistical accuracy measures namely, overall accuracy, area under
the curve (AUC), success rate and prediction rate curves were
estimated for statistical comparison of the method performances.

2. Study area and data

The area selected for this study covers the Tonya district of
Trabzon in Turkey (Fig. 1). The overall area of the district is about
200 km2, located between 39� 130 and 39� 210 westeeast longitudes
and 40� 570 and 40� 430 northesouth latitudes. The study area is
characterized by steep slopes associated with shallow soils in
mountainous regions. Annual rainfall of 2200 mm and high slope
gradients reaching to 64� are the key triggering factors for land-
slides. It can be stated that climatic conditions, topography and soil
attributes havemajor contributions for landslide occurrences in the
study area.

The geological map of the study area, including 8 lithological
units, was created from 1:100,000-scale geological map published
by the General Directorate of Mineral Research and Exploration of
Turkey in 1998. Geological units of the study area are mainly
formed by LiaseDogger (Jlh) Upper CretaceousePaleocene (Cru1,
Cru2, Cru3, Cru4b and Cru5b) and Eocene (Gama2, Ev) epochs
(Fig. 2). The geological formations of the study area are primarily
Eocene and Upper CretaceousePaleocene system. Eight geologic
formations exist in the study area. Within these formations, Ev is
the main geological formation with 38% coverage which is mainly
composed of pyroclastic, greenish-grey basalt and andesite, sandy
limestone and tuff units.

In order to evaluate the kernel-based method performances,
thematic maps of a number of causative factors were created and
utilized in this study. The causative factors considered here were
slope angle, slope aspect, elevation, lithology, land cover/land use
(LULC), NDVI, profile curvature and TWI. It should be mentioned
that recent studies conducted in the Black Sea region also consid-
ered similar conditioning factors (Akgun et al., 2008; Nefeslioglu
et al., 2008a; Yalcin et al., 2011; Kavzoglu et al., 2015b). A grid cell
model was applied to estimate the susceptibility since it is the most
popular approach for spatial representation of the datasets. The
factor maps were available at different scales or intervals, so each
factor map was standardized to the same scale (i.e. 30 � 30 m) for
further analysis. As stated by Fressard et al. (2014), the choice of the
raster images grid cell size is guided by both reference to the
imposed cartographic scale and the original scale/resolution of the
available data sets. Regarding the original cell size and contour line
density on the available thematic maps and satellite imagery
(Landsat TM) from which LULC map was produced through su-
pervised image classification. In addition, the maps in a continuous
data format were reclassified into discrete subclasses as an essen-
tial step to standardize the factor maps, which is a prerequisite for
analysis in GIS. Therefore, the factor maps with continuous data
(slope, NDVI, elevation, profile curvature, and TWI) were classified
using natural break approach so that continuous data were con-
verted to classes in specific intervals (Table 1). Other factor maps
(lithology, aspect and LULC) were reclassified into classes in order
to make the same output scaling. The Digital Elevation Model
(DEM) produced from 1:25,000 scale topography maps was used to
create the topographic parameters (elevation, slope angle, slope
aspect, profile curvature and TWI) related to the landslide activity.
While elevations in the study area were ranging from 201 m to
2412 m, slope angles varied between 0� and 64�.

Landslide inventory maps documenting the extent of landslide
phenomena in a specific region and representing information about
their spatial distribution, types, vulnerability, recurrence and sta-
tistics of slope failures are important sources for mapping landslide
susceptibilities (Guzetti et al., 2012; Dou et al., 2015b). Landslide
inventory maps were produced to introduce the locations of the
past landslides and potential non-landslide sites. Several sampling
strategies have been applied in the literature to construct landslide
susceptibility maps. For example Nefeslioglu et al. (2008b) inves-
tigated conceptual difference of susceptibility models by applying
two different sampling methods: from all landslide area with
depletion and accumulation zones and from a zone which almost
represents pre-failure conditions. On the other hand, some re-
searchers preferred to use points to represent the spatial location of
landslides (Neuh€auser et al. 2012; Bui et al., 2012). Dai and Lee
(2002) considered only the data source areas defined by a surface
of rupture which comprises the main scarp and the scarp floor and
used a spatially uniform sampling scheme excluding a 40-m buffer
zone. Furthermore, the landslide area with depletion and accu-
mulation zones named as seed-cells to represent pre-failure con-
ditions was proposed by Suzen and Doyuran (2004). ‘Sampling
Circle’ approachwas proposed to define shallow landslide initiation
in the mapping units in susceptibility evaluations by Nefeslioglu
et al. (2011). Several previous researches preferred to use rapture
zones of landslides as a sampling unit in landslide susceptibility
mapping (Remondo et al., 2003; Santacana et al., 2003).

Landslide inventory map used in this study was prepared after
“Turkish Landslide Inventory Mapping Project”, started in 1997, by
General Directorate of Mineral Research and Exploration (MTA). In
the project, landslides were delimited on 1:25,000 scale topo-
graphic base maps by interpretation of aerial photographs
(1:35,000e1:10,000 scale) and field investigations. The landslides
(i.e. active and inactive) were then digitized and stored in GIS
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