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a b s t r a c t

The min–max Split Delivery Multi-Depot Vehicle Routing Problem with Minimum Service Time
Requirement (min–max SDMDVRP-MSTR) is a variant of the Multi-Depot Vehicle Routing Problem. Each
customer requires a specified amount of service time. The service time can be split among vehicles as
long as each vehicle spends a minimum amount of service time at a customer. The objective is to
minimize the duration of the longest route (where duration is the sum of travel and service times).

We develop a heuristic (denoted by MDS) that solves the min–max SDMDVRP-MSTR in three stages:
(1) initialize a feasible solution without splits; (2) improve the longest routes by splitting service times;
(3) ensure all minimum service time requirements are satisfied. The first stage of MDS is compared to an
existing heuristic to solve the min–max Multi-Depot Vehicle Routing Problem on 43 benchmark
instances. MDS produces 37 best-known solutions. We also demonstrate the effectiveness of MDS on 21
new instances whose (near) optimal solutions can be estimated based on geometry. Finally, we inves-
tigate the savings from split service and the split patterns as we vary the required service times, the
average number of customers per route, and the minimum service time requirement.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The classical Vehicle Routing Problem (VRP) models the dis-
tribution of goods from a single depot to the customers. A custo-
mer has a demand that must be satisfied in full by one visit of a
vehicle. The sum of the demands delivered by a vehicle cannot
exceed its capacity. A vehicle must start and end its route at the
depot. There is usually no constraint on the number of vehicles
used. The objective is to minimize the total distance traveled by all
vehicles. The VRP was introduced by Dantzig and Ramser [7] in
1959 to model gasoline delivery. Many variants of the VRP have
been developed to model real-world problems. We refer interested
readers to Golden et al. [9] and Toth and Vigo [19,20] for com-
prehensive surveys of the VRP and its variants.

While most of the published research focuses on minimizing
the sum of the route costs, minimizing the maximum route cost is
applicable in situations where the last delivery is crucial or the
balance of the route lengths is desired. Last delivery applications
include military operations, disaster relief routing, newspaper

delivery, and computer networks. Balancing route length appli-
cations include school bus routing and workload balance among
drivers. Campbell et al. [4] and Bertazzi et al. [3] showed that, from
the worst-case perspective, a solution to the min–max objective
can be very different from the solution to the traditional min-sum
objective. This finding motivates the development of exact and
heuristic algorithms specifically designed for the min–max
objective. Carlsson et al. [5] first proposed the min–max Multi-
Depot VRP and solved it using a linear program-based, load bal-
ancing approach [23] and a region partitioning approach. Wang
et al. [21] developed a three-stage heuristic (denoted by MD) that
combined local search and perturbation strategies and improved
the results of Carlsson et al. [5] significantly. Narasimha et al. [14]
constructed an ant colony procedure to solve both the multi-depot
and single-depot versions of the min–max problem. Ren [15]
proposed a hybrid genetic algorithm for the single-depot min–
max VRP.

Recently, Yakici and Karasakal [22] studied a min–max service
VRP with split delivery and heterogeneous demands. Customer
demands are described by the service times and the service types
that are required. Customer service can be split among vehicles if
it improves the min–max objective. If there is no route duration
constraint, service times do not alter the routing plan of the classic
VRP solution, but can change the routing plan of the min–max
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solution [3]. Split delivery often reduces the total cost to the car-
rier [1,2,8], but can inconvenience the customers because of work
disruptions and paperwork. Gulczynski et al. [10] introduced a
split delivery VRP with minimum delivery amounts. A customer's
demand can be satisfied by multiple visits, provided each delivery
is not less than a specified fraction of total demand.

In this paper, we study the min–max Split Delivery Multi-Depot
Vehicle Routing Problem with Minimum Service Time Require-
ment (min–max SDMDVRP-MSTR). The objective function value
has two components: (1) the travel times of the vehicles and
(2) the service times of the customers on the route. They con-
tribute differently to the objective. When the minimum delivery
fraction is greater than one half, i.e., no split deliveries allowed, the
service time contribution is determined entirely by individual
customers. However, the travel time contribution is determined by
all customers. In particular, if a new customer is added to the
route, the increase in service time can be readily obtained, but the
exact increase in travel time cannot be computed easily. When
travel times dominate, the problem is closer to the min–max
MDVRP studied by Carlsson et al. [5]. When service times dom-
inate, the problem is closer to the Multi-Way Number Partitioning
Problem [13]. Both problems are difficult to solve. When the travel
times and service times are comparable, the problem represents a
trade-off between the two equally weighted objectives.

We develop a heuristic algorithm (denoted by MDS) to solve
the min–max SDMDVRP-MSTR. The MD solver developed by Wang
et al. [21] is modified to generate a good initial solution without
splits. Next, a network flow model is used to improve the solution
by splitting service, assuming no minimum service time require-
ment. Finally, a linear program is solved to ensure that each visit
by a vehicle has at least the minimum service time.

There are numerous potential applications of the SDMDVRP-
MSTR including military operations, disaster relief, and the dis-
tribution of industrial gases and other products where the delivery
service time is relatively large.

The remainder of the paper is organized as follows. In Section 2,
the min–max SDMDVRP-MSTR is described formally. In Section 3,
structural properties of the optimal solution when the minimum
service time fraction is zero are provided. In Section 4, a heuristic
algorithm (MDS) for the general problem is developed. In Section 5,
the computational results are presented and discussed. Finally,
Section 6 gives our concluding remarks.

2. Problem description

Let G W [ V ; Eð Þ be a complete graph, where W ¼ fw1; w2;…;

wm�1;wmg and V ¼ fv1; v2;…; vn�1; vng are two sets of vertices, and E
is the corresponding set of edges. A vertex, wjAW , where
j¼ 1;2;…;m, corresponds to a depot where a fixed number, lj, of
vehicles are stationed. A vehicle that starts from wj must return to wj

at the end of its route. Unlike the classic min-sum VRP, which seldom
specifies a finite number of vehicles, the min–max problem requires
the number of vehicles in advance; otherwise the optimal solutionwill
consist entirely of routes serving only one customer. A vertex, viAV ,
where i¼ 1;2;…;n, corresponds to a customer who requires a service
time of si. A customer can be visited multiple times by different
vehicles as long as the service requirement is met in full at the end of
the last visit and each visit delivers the minimum required service
time. An edge eAE is associated with a cost, te, representing the travel
time between the two vertices that define the edge. We assume that
the travel times satisfy the triangle inequality. The total cost of a route,
or its duration T, is the sum of the travel times spent on the road and
the service times spent at the customers. Unlike the classic min-sum
VRP, which often poses a constraint on the maximum length of a
route, the min–max problem does not require a maximum duration
constraint, because the objective is to minimize the duration of the
longest route.

3. Structural properties of optimal solutions

Dror and Trudeau [8] provided a set of properties for the
optimal solution to the (min-sum) Split Delivery Capacitated
Vehicle Routing Problem (SDCVRP). In this section, we develop a
similar set of properties that provide insights into the structure of
an optimal solution to the min–max SDMDVRP with no minimum
service time fraction.

Property 1. Any min–max SDMDVRP has an optimal solution in
which no two routes share more than one customer.

Proof. Suppose that, in an optimal solution, routes R1 and R2 both
service customers C1 and C2, as illustrated in Fig. 1(a). Let sðjÞi be the
service time delivered by route Rj at customer Ci, where
i; j¼ 1 or 2. Without loss of generality, assume further that
sð1Þ2 Zsð2Þ1 . We can construct a new solution by transferring the
service time spent at C1 by route R2 (sð2Þ1 ) to route R1 and, at the
same time, transferring the same amount of service time spent at

Fig. 1. Illustrating Property 1.
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