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a b s t r a c t

Production planning plays an important role in the industrial sector. The focus of this paper is on the lot
sizing of those companies composed by multiple plants, each of them with a finite planning horizon
divided into periods. All plants produce the same items and have their demands to be met without delay.
For producing items, all plants have a single machine with setup times and costs and a limited capacity of
production. Transfers of production lots among plants and storage of items are allowed. Even though
there are some studies to tackle this problem, to find feasible solutions for the entire set of benchmark
instances remains a challenge. This paper introduces novel Lagrangian heuristics that, besides heur-
istically solving all benchmark instances, significantly outperformed the best heuristic from the litera-
ture.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Production planning has been the subject of several researchers
primarily due to the need for addressing the highly competitive
productive sector. It is essential for a better use of resources and
involves the decision making in a company for manufacturing and
delivering products. The long-, medium- and short-term decisions
are of utmost importance to optimize the costs related to the
production process, from the acquisition of raw materials to final
product delivery. Lot sizing, the problem focused in this paper,
belongs to the short-term planning [5].

Accordingly, the multi-plant capacitated lot sizing problem
(MPCLSP) aims at deciding in a finite planning horizon, the
amount, when and what to produce to meet the demands of the
plants. In addition, the demands must be satisfied without delay
with the lowest cost possible. In particular, this study draws
attention to the MPCLSP with multiple items and periods whose
plants can produce any item, but have limited time (capacity) for
operating the machines in each period. Moreover, in this problem,
it is possible to keep inventory and to transfer production lots
between plants. One can find in the literature a few studies on the
MPCLSP [18,19,16]. Other variants of the lot sizing problem that
are highly related to the MPCLSP can be found in [24,12].

Nascimento et al. [16] generated a set of benchmark instances
with different sizes and characteristics and put forward a solution

method to heuristically solve the MPCLSP. It was not possible to find
the optimal solutions for all instances by using the optimization
package CPLEX v.7.5 because CPLEX ran out of either time or mem-
ory. Therefore, the authors proposed a hybrid metaheuristic that,
however, could not find feasible solutions for a number of instances.

The primary goal of this paper is to find sharpened upper
and lower bounds for the MPCLSP. In line with this, this paper
includes as main contributions novel Lagrangian heuristics
that significantly outperformed the state-of-the-art heuristic for
the MPCLSP, known as GPheur, in both experiments carried out.
Additionally, taking the benchmark instances into account, com-
paring the achieved results with those obtained by CPLEX v. 12.6
[14] within a time limit of 1800 s, the proposed heuristics, named
Lag and LaPRe, were very competitive, with better results for the
high setup cost classes of instances. On average, LaPRe was twice
better than CPLEX for these instances. Moreover, in an experiment
with instances with a higher number of plants and items, Lag and
LaPRe performed considerably better than CPLEX v. 12.6 and
GPheur.

The remainder of this paper is organized as follows. Section 2
presents the studied integer program. Section 3 loosely details the
state-of-the-art heuristic for solving the MPCLSP, and related
works. Section 4 shows the proposed hybrid Lagrangian heuristic
at length. Section 5 reports an analysis of the experiments carried
out for attesting the effectiveness of Lag and LaPRe. To sum up,
Section 6 summarizes the primary contributions of this paper and
presents some final remarks.
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2. The multi-plant, multi-item, multi-period capacitated lot
sizing problem

This paper approaches the multi-period lot sizing problemwith
multiple plants, each of them with their amounts of items
demanded in the periods (MPCLSP). Sambasivan and Schimidt [18]
originally proposed the problem and presented a mathematical
formulation, also discussed in [16]. Silva and Toledo [21] recently
presented a reformulation of the MPCLSP, presented in formula-
tion (1)–(6). This formulation is strongly related to the model
found in [6].

Let m be the number of plants, each of which indexed from 1 to
m; a, the number of periods of the planning horizon, each of which
indexed from 1 to a; and n, the number of items, each of which
indexed from 1 to n. All demands are defined in advance as well as
the production capacity of the plants in each period. Additionally,
the MPCLSP allows transfers of production lots and the storage of
production. For this reason, this study takes into account, for the
production planning, the amount of an item i to be produced in a
plant-period (j,t) to meet the demand of a plant-period (k,u) for
defining the corresponding variable xijtku.

Moreover, the following parameters must be explicit in the
instances of this problem:

sij: the setup cost for producing item i at plant j;
cij: the unitary production cost of item i at plant j;
eij: the unitary inventory cost of item i at plant j;
rjk: the unitary transportation cost of items from plant j to

plant k;
diku: the demand of item i at plant k in period u;
bij: the processing time of item i at plant j;
fij: the setup time for preparing the machine for producing

item i at plant j;
Pjt: the production capacity of plant j in period t.

The mathematical formulation is presented next:
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Let χijtku be the costs of inventory and transfers between plants
for producing item i at plant j in period t to meet the demand at
plant k in period u. Bearing in mind that rjj ¼ 0; 8 jAf1;…;mg,
Eq. (7) shows a form to calculate these costs:

χ ijtku ¼ min
1rvrm

fðu�tÞeivþrjvþrvkg ð7Þ

Therefore, for calculating the corresponding costs for producing
item i at plant j in period t to satisfy the demand diku, one may use

the following equation:

cijtku ¼
0; if uot;

cijþχ ijtku; otherwise:

(

According to cost cijtku, once the variable xijtku is positive, item i
will be stored from period u to t in the plant with the lowest
inventory cost. The objective function, in Eq. (1), aims at finding a
solution with the lowest sum of the following costs: production,
setup, inventory and transfers between plants. Constraints (2)
force the production of the demands of all plants, whilst con-
straints (3) have as primary goal to keep production within the
capacity limit of every plant in any of the periods. Constraints (4)
limit the production at plant j in period t to meet the demand of
item i of every pair plant-period (k,u) taking the capacity Pjt into
account. Finally, constraints (5) and (6) define, respectively, the
domain of the variables xijtku to be natural values and yijt to be
binary. Even though this formulation presents an asymptotically
significant augment in the number of variables when comparing
with the mathematical model introduced in [18], with regard to
the instances introduced in [16], it was responsible for tighter
linear relaxations [20].

3. Related works

There are a few studies dealing with the MPCLSP in the lit-
erature. This specific problem was first investigated in [18]. The
case study presented by the authors consists in the production
planning of an American manufacturing company of steel rolls
with plants positioned in different regions of the country. This
type of problem concerns various productive sectors involving
large companies, such as beverage corporations, mattress com-
panies and chemical industries [1,2,8]. For heuristically solving the
MPCLSP, Sambasivan and Yahya [19] presented a heuristic based
on the Lagrangian relaxation of the capacity constraints of the
mathematical formulation proposed in [18]. In the cases where the
solutions of the approximate relaxed problem were infeasible for
the MPCLSP, the authors performed the same strategy used in [18]
as an attempt to find feasible solutions.

Later, Nascimento et al. [16] developed a hybrid metaheuristic
that significantly outperformed the aforementioned Lagrangian
heuristic. This solution method is a Greedy Randomized Search
Procedure (GRASP) embedded with the diversification strategy
so-called path-relinking [10]. GRASP is a strategy with multiple
iterations, each of which with two stages: a semi-greedy con-
struction phase and a local search phase. The construction phase
relies on the polynomial algorithm for the uncapacitated lot-sizing
problem on parallel facilities [22]. The authors modified such
algorithm for being semi-greedy for the uncapacitated multi-plant
lot sizing problem. The authors introduced a feasibility strategy
that shifts viable production lots among the plants and periods as
an attempt to eliminate the capacity violations. If the resulting
solution is feasible, then the local search phase starts. Otherwise,
the iteration is over. Afterward, the path-relinking starts for then
the iteration halts. As both their feasibility phase and local search
were employed in the algorithms here proposed, they are thor-
oughly described in Sections 4.2.1 and 4.2.2.

In addition to the set of instances proposed by Sambasivan and
Yahya [19,16] generated larger and harder to solve instances. In
spite of its good performance, the GRASP with path-relinking
heuristic, named GPheur, could not solve all tested instances. Since
then, no efficient strategy has been proposed, the primary reason
that supported the proposal of the matheuristics introduced in
this paper.
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