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Abstract—A review on semitensor product (STP) of matrices is given. It is a generalization
of the conventional matrix product for the case when the dimensions of the factor matrices do not
satisfy the requirement. Using it, we investigate some structure-related properties of algebras. First,
we consider when an algebra is a Lie algebra. The result reveals the topological structure of all
finite-dimensional Lie algebras as the variety of a set of polynomial equations. Then we investigate
the invertibility of algebras. Invertibility condition is expressed via STP. Finally, the tensor product
of algebras is investigated. (© 2006 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Let A € Myxn and B € Mpyq, where M,y stands for the set of s X ¢ real matrices. It is
well known that the conventional matrix product AB is well defined as long as the dimension
matching condition, n = p, is satisfied. When n # p, a new matrix product, called the semitensor
product (STP) of matrices, has been proposed and investigated by the author first in [1]. Unlike
Kronecker product, the STP is a generalization of the conventional matrix product.

The main purpose for introducing this new matrix product is to treat higher-dimensional data,
i.e., data with indexes of multiplicity greater than two. Using it for multivariable polynomials,
it is conventional in dealing with nonlinear mappings.

Recently, in some statistical papers, three-dimensional data have been arranged as a cubic
matrix and the corresponding new “matrix” product has been defined and investigated, see,
e.g., [2,3] as initial works, and there are several followups. One sees easily that it is in general
not convenient in use. First, the product can be defined in different ways and the formulas are
complicated. Second, it cannot be generated to the higher-dimensional case. We need a new
matrix product which can treat higher-dimensional data easily.
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Another motivation for introducing this new matrix product is from computer science. In
computer storage the higher-dimensional data are stored in memory as a long queue, and the
program, say in C-language, can find the hierarchies of data by using pointer, pointer-to-pointer,
pointer-to-pointer-to-pointer, and so on. Roughly speaking, the STP is designed in such a way
that it can search pointers automatically. So, it is convenient in dealing with higher-dimensional
data.

When a nonlinear problem is considered, one way to handle the problem is to approximate it
by polynomials, say, its Taylor expansion. In fact, a k*'-order homogeneous polynomial can be
considered as a multilinear mapping over k*"-dimensional data. Through such a conversion, STP
can naturally be used to deal with nonlinear problems.

Some advantages of STP are listed as follows.

e As a generalization of the conventional matrix product, it inherits almost all the major
properties of the conventional matrix product.

e Since the conventional matrix product is a special case of STP, which is associative, it is
convenient in manipulating data. (In fact, STP can be expressed as mixed conventional
and Kronecker products. But since associativity between these products fails, simplifying
or manipulating a mixed expression is extremely difficult.)

e When a vector product is considered, e.g., the cross product in R3, it can be easily
expressed as a STP, while the conventional matrix product can hardly be used.

Recently, the STP of matrices has been used in dealing with several different problems, mostly,
control problems. For instance, Cheng [1] used it to convert Morgan’s problem (i.e., input-
output decoupling problem) to the existence of a nonzero solution of a set of algebraic equations.
The nonregular feedback linearization of nonlinear systems was discussed in [4], and some useful
formulas and their deductions are based on STP. It has also been used in estimating the boundary
of the region of attraction of a stable equilibrium of a power system [5,6]. The STP has also some
other applications to group theory and differential geometry [7], to physics [8], etc.

The purpose of this paper is to use it to investigate the structures and properties of algebras.
For a finite-dimensional algebra, we assign a structure matrix to it. Then the properties of an
algebra can be studied via its structure matrix. A motivation for doing this is: the definition of
an algebraic structure can only be used to check whether a set with certain operator(s) meets
the definition. But through investigating the structure matrix, we may find all such sets. For
instance, we may answer how many three-dimensional Lie algebras there are in the world.

The rest of this paper is organized as follows: Section 2 provides necessary preliminaries for
STP of matrices. Section 3 gives the matrix expression of general algebras. A general matrix
condition of Lie algebras is presented in Section 4. Then the set of n-dimensional Lie algebras
is described as the variety of a set of polynomials. Section 5 considers the invertibility of an
algebra. Section 6 considers the tensor product of algebras. Section 7 contains some concluding
remarks.

2. SEMITENSOR PRODUCT
OF MATRICES

This section gives a brief review on STP of matrices. It plays a fundamental rule in the
following discussion. We restrict it to the definitions and some basic properties, which are useful
in the sequel. We refer to [4,9] for more details.

DEFINITION 2.1.

1. Let X be a row vector of dimension np, and Y be a column vector with dimension p.
Then we split X into p equal-size blocks as X!,..., XP, which are 1 x n rows. Define the
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