
Computers and Mathematics with Applications 63 (2012) 1361–1368

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Some ordered fixed point results and the property (P)
V. Ghorbanian a, Sh. Rezapour a, N. Shahzad b,∗

a Department of Mathematics, Shahid Madani University, Azarshahr, Tabriz, Iran
b Department of Mathematics, King AbdulAziz University, P.O. Box 80203, Jeddah 21859, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 2 August 2011
Received in revised form 24 December 2011
Accepted 27 December 2011

Keywords:
Fixed point
Convex contractions
Ordered metric space
The property (P)

a b s t r a c t

In 2010, Kadelburg et al. ([7]) by providing an example showed that a contraction in an
ordered metric space is not necessarily a contraction (in the classical sense). Thus fixed
point results in ordered metric spaces are generalizations of ones in metric spaces in a
sense. In this paper, we give some ordered fixed point results for convex contractions and
special mappings which satisfy some contraction conditions. Also, we give some results
concerning the property (P).

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The notion ofmetric spaceswas introduced in 1906 byMaurice Frechet. Since then, many researchers have exploited this
notion to define various concepts, using different views and ideas. One of the important notions is that of ordered metric
spaces. We say that (X, d,≤) is an ordered metric space whenever ≤ is an order on X and (X, d) is a metric space. Although
these spaces have been considered by many authors recently and even though ordered metric spaces were introduced and
studied a few years ago, there are some old works on these spaces. For example, Vandergraft reviewed the Newton method
for convex operators on partially ordered spaces in 1967 [1]. Also, Wolk reviewed continuous convergence on partially
ordered spaces in 1975 [2]. Later, Sun and Sun started ordered fixed point theory in 1989 [3] and after some years it was
continued by Agarwal et al. [4]. Also, Wanka published a paper concerning approximation theory in ordered spaces in
1996 [5]. In 2010, Altun et al. [6] and Kadelburg et al. [7] proved some fixed point and common fixed point theorems on
ordered metric spaces by using a cone. In recent years, ordered fixed point theory has been considered by many authors
(see, for example, [8–33]).

Rhoades defined the property (P) on metric spaces in his works [34–36]. Denote, as usual, by F(T ) the set of fixed points
of themapping T : X → X . We say that a self-map T has the property (P) whenever F(T ) = F(T n) for all n ≥ 1, that is, it has
no periodic points. Note that F(T ) ⊆ F(T n) for all n ≥ 1. Recently, two interesting papers have appeared on the property
(P) [37,38].More recently, Alghamdi et al. have studied convex contraction and two-sided convex contractionmappings [39],
which were introduced by Istratescu [40] in 1982. We use these notions to obtain some results. In this paper, we give some
ordered fixed point results for convex contractions and special mappings which satisfy some contraction conditions and are
not necessarily continuous. Also, we give some results concerning the property (P).

2. The main results

Let (X,≤) be a partially ordered set. We define X≤ = {(x, y) ∈ X × X : x ≤ y or y ≤ x}. Also, we say that a self-map
T : X → X is orbitally continuous at xwhenever for each sequence {n(i)}i≥1 with T n(i)x → a for some a ∈ X , we have

T n(i)+1x → Ta.
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Here, Tm+1
= T (Tm). Finally, we define the orbit of T at x by

O(x,∞) := {x, Tx, T 2x, . . . , T nx, . . .}

and we say that T has the strongly comparable property whenever (T n−1y, T ny) ∈ X≤ for all n ≥ 1 and m ≥ 2, where
y ∈ F(Tm).

Theorem 2.1. Let (X, d,≤) be a complete ordered metric space, λ ∈ (0, 1) and T a self-map on X satisfying the condition

min{d2(Tx, Ty), d(x, y)d(Tx, Ty), d2(y, Ty)} − min{d2(x, Tx), d(y, Ty)d(x, Ty), d2(y, Tx)} ≤ λ d(x, Tx)d(y, Ty)

for all x, y ∈ X≤. If there exists x0 ∈ X such that (T n−1x0, T nx0) ∈ X≤ for all n ≥ 1 and T is orbitally continuous at x0, then T has
a fixed point. Moreover, if T has the strongly comparable property, then T has the property (P).

Proof. Define xn+1 = Txn = T n+1x0 for all n ≥ 0. If xn0 = xn0−1 for some natural number n0, then xn = xn0 for all n ≥ n0
and xn0 is a fixed point of T . Suppose that xn ≠ xn−1 for all n ≥ 1. Now for each n ≥ 1, by using the assumption, we can put
x = xn−1 and y = xn in the condition. Thus, we obtain

min{d2(xn, xn+1), d(xn−1, xn)d(xn, xn+1)} ≤ λ d(xn−1, xn)d(xn, xn+1).

Since λ < 1,min{d2(xn, xn+1), d(xn−1, xn)d(xn, xn+1)} = d2(xn, xn+1). Hence,

d(xn, xn+1) ≤ λd(xn−1, xn).

By continuing this process we obtain d(xn, xn+1) ≤ λnd(x0, x1) for all n ≥ 1. Thus, for each natural number k, we have

d(xn, xn+k) ≤

n+k−1
i=n

d(xi, xi+1) ≤

n+k−1
i=n

λid(x0, x1) ≤
λn

1 − λ
d(x0, x1).

Therefore, {xn} is a Cauchy sequence. Since (X, d) is a complete metric space, there exists u ∈ X such that xn → u. Since T
is orbitally continuous, xn+1 = Txn → Tu. This implies that Tu = u. Now, we prove that T has the property (P). Let n ≥ 2 be
given and v ∈ F(T n). Since T has the strongly comparable property, we can put x = T n−1v and y = T nv in the condition.
Thus, we obtain

min{d2(T nv, T n+1v), d(T n−1v, T nv)d(T nv, T n+1v)} ≤ λ d(T n−1v, T nv)d(T nv, T n+1v).

Thus, min{d2(v, Tv), d(T n−1v, v)d(v, Tv)} ≤ λ d(T n−1v, v)d(v, Tv) and so two cases arise.

Case I. d2(v, Tv) ≤ λ d(T n−1v, v)d(v, Tv).
We claim that d(v, Tv) = 0. If d(v, Tv) > 0, then d(v, Tv) = d(T nv, T n+1v) ≤ λ d(T n−1v, T nv). By putting x = T n−2v

and y = T n−1v in the condition, we obtain

min{d2(T n−1v, T nv), d(T n−2v, T n−1v)d(T n−1v, T nv)} ≤ λ d(T n−2v, T n−1v)d(T n−1v, T nv).

Let d2(T n−1v, T nv) ≤ λ d(T n−2v, T n−1v)d(T n−1v, T nv). If d(T n−1v, T nv) = 0, then T n−1v = v and so v = T nv = Tv. If
d(T n−1v, T nv) > 0, then d(T n−1v, T nv) ≤ λ d(T n−2v, T n−1v). Now, let

d(T n−2v, T n−1v)d(T n−1v, T nv) ≤ λ d(T n−2v, T n−1v)d(T n−1v, T nv).

So we should have d(T n−2v, T n−1v) = 0 or d(T n−1v, T nv) = 0 (and so v = Tv), because if d(T n−2v, T n−1v) > 0 and
d(T n−1v, T nv) > 0, then we get λ ≥ 1 which is a contradiction. By continuing this process, we obtain

d(v, Tv) = d(T nv, T n+1v) ≤ λ d(T n−1v, T nv) ≤ λ2 d(T n−2v, T n−1v) · · · ≤ λn d(v, Tv)

which leads us to λ ≥ 1 which is a contradiction. Therefore, in this case we have d(v, Tv) = 0 and so Tv = v.

Case II. d(T n−1v, v)d(v, Tv) ≤ λ d(T n−1v, v)d(v, Tv).
In this casewe should have d(T n−1v, v) = 0 or d(v, Tv) = 0 (and so v = Tv). In fact, if d(T n−1v, v) > 0 and d(v, Tv) > 0,

thenλ ≥ 1which is a contradiction. Thus,wehave the consequence that F(T n) ⊆ F(T ). Therefore, T has the property (P). �

The following example shows that there are nonlinear and discontinuous mappings which satisfy the condition of
Theorem 2.1.

Example 2.1. Let X = [0,∞), d(x, y) = |x − y| and T be a self-map on X defined by Tx = 0 whenever 0 ≤ x ≤ 10, Tx =

x − 10 whenever 10 ≤ x ≤ 11 and Tx = 1.1 whenever x > 11. Then, on putting λ =
1
2 , T satisfies the condition of

Theorem 2.1.



Download English Version:

https://daneshyari.com/en/article/472966

Download Persian Version:

https://daneshyari.com/article/472966

Daneshyari.com

https://daneshyari.com/en/article/472966
https://daneshyari.com/article/472966
https://daneshyari.com

