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a b s t r a c t

In this paper, approximate solutions of singular initial value problems (IVPs) of the
Lane–Emden type in second-order ordinary differential equations (ODEs) are obtained by
an improved Legendre-spectralmethod. The Legendre–Gauss points are used as collocation
nodes and Lagrange interpolation is employed in the Volterra term. The results reveal that
the method is effective, simple and accurate.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The Lane–Emden equation describes the gravitational potential of a self-gravitating spherically symmetric polytropic
fluid, as well as the equilibrium density distribution in a self-gravitating sphere of polytropic isothermal gas, which
is of fundamental importance in the fields of stellar structure [1], radiative cooling, modeling of clusters of galaxies,
astrophysics [2], etc. We consider the following Lane–Emden type equation [1,3]:

y′′ +
2
t
y′ + f (y) = 0, 0 < t ≤ 1 (1.1)

subject to

y(0) = a, y′(0) = 0 (1.2)

where t and y denote the independent and dependent variables, respectively, the primes denote differentiationwith respect
to t , f (y) is a nonlinear function of y, and a is a constant. It should be noted that the most general form of singular initial
value problems of Lane–Emden type is as follows:

y′′ +
2
t
y′ + f (t, y) = g(t), 0 < t ≤ 1 (1.3)

subject to conditions (1.2), where f (t, y) is a continuous real valued function, and g(t) ∈ C[0, 1]. This has also been handled
analytically by using perturbation methods [4], Adomian’s decomposition method [5], the quasilinearization method of
Bellman and Kalaba [6], the piecewise linearization technique [7] and a variational method [8]. The variational iteration
method [2] and the collocation method have been utilized for solving the Lane–Emden equation arising in astrophysics
in [2,9]. Also a numerical method can be found in [10].
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In this paper, we first transform Eq. (1.1) into a Volterra integral equation and then solve it numerically by a spectral
method. Overall, the spectral class of solutionmethods, based on using orthogonal polynomials, are implemented in various
ways, such as using pantograph type delay differential equations [11] and Volterra type integral equations [12]. The spectral
method provides the most convenient computer implementations.
The remainder of the paper is organized as follows: In Section 2, we transform Eq. (1.3) into a Volterra integral equation

with sufficiently smooth kernel. In Section 3, we present an improved Legendre-collocationmethod. In Section 4, numerical
results for some problems are investigated and the corresponding tables are presented. Finally in Section 5 the report ends
with a brief conclusion.

2. Volterra’s integral equation formulation

Eq. (1.1) can be written as

L(y) = ty′′ + 2y′ = −tf (t, y)+ tg(t) (2.1)

and the solution of L(y) = 0 together with the method of variation of parameters yields

y(t) =
1
t

(
C +

∫ t

0
s2f (u(s))ds

)
+ D−

∫ t

0
(sf (s, y(s))− sg(s))ds (2.2)

where C and D are constants. Imposing the initial conditions of (1.2), we obtain

y(t) = a+
∫ t

0

(
s2

t
− s
)
(f (s, y(s))− g(s))ds (2.3)

which is a nonlinear Volterra integral equation of the second kind.

3. The Legendre-collocation method

In order to use a spectral method, we consider the collocation points as the set of N Legendre–Gauss, or Gauss–Radua, or
Gauss–Lobatto points {tj}Nj=1.
If we do so, entering the collocation points, (2.3) gets replaced by

y(tj) = a+
∫ tj

0

(
s2

tj
− s
)
(f (s, y(s))− sg(s))ds, tj ∈ [−1, 1], j = 1, 2, . . . ,N. (3.1)

The main difficulty in obtaining a high rate of accuracy is computing the integral term in (3.1). In fact for small values of tj,
there is little information available for y(s). To overcome this difficulty, the integral interval (0, tj] is transferred to the fixed
interval (−1, 1]. We first make the following simple linear transformation:

s(t, θ) =
t
2
θ +

t
2
, −1 ≤ θ ≤ 1. (3.2)

Then (3.1) takes the form

y(tj) = a+
tj
2

∫ tj

0

(
s2(tj, θ)
tj
− s(tj, θ)

) (
f (s(tj, θ), y(s(tj, θ)))− g(s(tj, θ))

)
dθ. (3.3)

Using an N-point Gauss quadrature rule related to the Legendre weights {wj} in [−1, 1] gives

y(tj) = a+
tj
2

N∑
k=1

(
s2(tj, θk)
tj

− s(tj, θk)
) (
f (s(tj, θk), y(s(tj, θk)))− g(s(tj, θk))

)
wk, (3.4)

where {θk}Nk=1 coincide with the collocation points {tj}
N
j=1. We now need to represent f (s, y(s)) in terms of yk for k =

1, 2, . . . ,N . To this end, we expand them, using Lagrange interpolation polynomials, in the vector sense as

y(s) ≈
N∑
p=1

yp Łp(s), (3.5)

where Łp is the p-th Lagrange basis function and is expressed in terms of Legendre functions by

Łp(s) =
N∑
k=1

βk, pPk(s). (3.6)
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