A power of an entire function sharing one value with its derivative

Ji-Long Zhang ${ }^{\text {a,* }}$, Lian-Zhong Yang ${ }^{\text {b }}$
${ }^{\text {a }}$ Beihang University, LMIB and School of Mathematics \mathcal{E} Systems Science, Beijing, 100191, PR China
${ }^{\mathrm{b}}$ Shandong University, School of Mathematics, Jinan, Shandong, 250100, PR China

A R T I C L E I N F O

Article history:

Received 16 May 2009
Received in revised form 2 August 2010
Accepted 2 August 2010

Keywords:

Uniqueness theorems
Shared value
Entire function

Abstract

In this paper, we investigate uniqueness problems of entire functions that share one value with one of their derivatives. Let f be a non-constant entire function, n and k be positive integers. If f^{n} and $\left(f^{n}\right)^{(k)}$ share 1 CM and $n \geq k+1$, then $f^{n}=\left(f^{n}\right)^{(k)}$, and f assumes the form $f(z)=c \mathrm{e}^{\frac{\lambda}{n} z}$, where c is a non-zero constant and $\lambda^{k}=1$. This result shows that a conjecture given by Brück is true when $F=f^{n}$, where $n \geq 2$ is an integer.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In what follows, a meromorphic (resp. entire) function always means a function which is meromorphic (resp. analytic) in the whole complex plane. We will use the standard notation in Nevanlinna's value distribution theory of meromorphic functions; see, e.g. [1].

We say that two meromorphic functions f and g share $a \in \mathbb{C} \operatorname{IM}$ (ignoring multiplicities) when $f-a$ and $g-a$ have the same zeros. If $f-a$ and $g-a$ have the same zeros with the same multiplicities, then we say that f and g share a CM (counting multiplicities). Let m and p be positive integers. We denote by $N_{p}(r, 1 /(f-a)$) the counting function of the zeros of $f-a$ where m-fold zeros are counted m times if $m \leq p$ and p times if $m>p$.

Recently, a widely studied subtopic of the uniqueness theory has been the consideration of shared value problems relative to a meromorphic function F and its k th derivative $F^{(k)}$. In order to get the uniqueness of sharing one value of F and $F^{(k)}$, some deficient assumption is needed. The reader is invited to see the recent papers [2-7].

The purpose of this paper is to study a power of an entire function sharing one value with its derivative. We will give some results concerning Brück's Conjecture, which is mentioned later.

Let f be a non-constant entire function and n be a positive integer. If f^{n} and $\left(f^{n}\right)^{\prime}$ share 1 CM , then there exists an entire function α such that

$$
\frac{\left(f^{n}\right)^{\prime}-1}{f^{n}-1}=\mathrm{e}^{\alpha} .
$$

Rewriting above equation, we have

$$
\begin{equation*}
g_{1}+g_{2}+g_{3}=1, \tag{1.1}
\end{equation*}
$$

where $g_{1}=\left(f^{n}\right)^{\prime}, g_{2}=-\mathrm{e}^{\alpha} f^{n}, g_{3}=\mathrm{e}^{\alpha}$.
There are many results on a combination of three meromorphic functions

$$
\begin{equation*}
f_{1}+f_{2}+f_{3}=1 \tag{1.2}
\end{equation*}
$$

in uniqueness theory. The following result is a useful one. As for the proof; see, e.g. [8].

[^0]Theorem 1.1. Let $f_{j}(j=1,2,3)$ be meromorphic functions satisfying (1.2). If f_{1} is not a constant, and

$$
\sum_{j=1}^{3} N_{2}\left(r, 1 / f_{j}\right)+\sum_{j=1}^{3} \bar{N}\left(r, f_{j}\right)<(\lambda+o(1)) T(r), \quad r \in I
$$

where $\lambda<1, T(r)=\max \left\{T\left(r, f_{1}\right), T\left(r, f_{2}\right), T\left(r, f_{3}\right)\right\}$, I denotes a set of $r \in(0, \infty)$ with infinite linear measure. Then either $f_{2}=1$ or $f_{3}=1$.

Applying Theorem 1.1 on (1.1), the present authors [8] got:
Theorem 1.2. Let f be a non-constant entire function, $n \geq 7$ be an integer. If f^{n} and $\left(f^{n}\right)^{\prime}$ share $1 C M$ and, then $f^{n}=\left(f^{n}\right)^{\prime}$, and f assumes the form

$$
f(z)=c \mathrm{e}^{\frac{1}{n} z}
$$

where c is a non-zero constant.
It is natural to ask whether n can be reduced in Theorem 1.2. In fact, there are much more relations between g_{j} in (1.1) than f_{j} in (1.2). By studying this, we give a result improving Theorem 1.2 in Section 2. In Section 3, we consider a power of an entire function sharing 1 IM with its derivative. We provide some concluding remarks in Section 4.

2. Sharing 1 CM

In order to get a general result, we consider f^{n} sharing 1 CM with its k th derivative, where k is a positive integer, and obtain the following result:

Theorem 2.1. Let f be a non-constant entire function, n and k be positive integers. If f^{n} and $\left(f^{n}\right)^{(k)}$ share $1 C M$ and $n \geq k+1$, then $f^{n}=\left(f^{n}\right)^{(k)}$, and f assumes the form

$$
\begin{equation*}
f(z)=c \mathrm{e}^{\frac{\lambda}{n} z} \tag{2.1}
\end{equation*}
$$

where c is a non-zero constant and $\lambda^{k}=1$.
In order to prove Theorem 2.1, we need the following lemma.
Lemma 2.2 ([1, Lemma 4.3]). Let f be a non-constant meromorphic function and $P(f)$ be a polynomial in f with constant coefficients. Let $b_{j}(j=1, \ldots, q)$ be distinct finite values. If $q>\operatorname{deg} P$, then

$$
m\left(r, \frac{P(f) f^{\prime}}{\left(f-b_{1}\right)\left(f-b_{2}\right) \cdots\left(f-b_{q}\right)}\right)=S(r, f)
$$

We begin to prove Theorem 2.1:
Proof. Denote

$$
\begin{equation*}
F=f^{n} \tag{2.2}
\end{equation*}
$$

Since F and $F^{(k)}$ share 1 CM , then there exists an entire function α, such that

$$
\begin{equation*}
F^{(k)}-1=\mathrm{e}^{\alpha}(F-1) \tag{2.3}
\end{equation*}
$$

Suppose first that e^{α} is a non-constant entire function. By differentiation, we have

$$
\begin{equation*}
F^{(k+1)}=\alpha^{\prime} \mathrm{e}^{\alpha}(F-1)+\mathrm{e}^{\alpha} F^{\prime} \tag{2.4}
\end{equation*}
$$

Combining (2.3) with (2.4) yields

$$
\begin{equation*}
F^{(k+1)} F-\alpha^{\prime} F^{(k)} F-F^{(k)} F^{\prime}=F^{(k+1)}-\alpha^{\prime}\left(F^{(k)}+F\right)-F^{\prime}+\alpha^{\prime} . \tag{2.5}
\end{equation*}
$$

By induction, we deduce from (2.2) that

$$
\begin{equation*}
F^{(k)}=\sum_{\lambda} c_{\lambda} f_{0}^{l_{0}^{\lambda}}\left(f^{\prime}\right)^{l_{1}^{\lambda}} \cdots\left(f^{(k)}\right)^{l_{k}^{\lambda}} \tag{2.6}
\end{equation*}
$$

where $l_{0}^{\lambda}, \ldots, l_{k}^{\lambda}$ are non-negative integers satisfying $\sum_{j=0}^{k} l_{j}^{\lambda}=n, n-k \leq l_{0}^{\lambda} \leq n-1$ and c_{λ} are constants.

https://daneshyari.com/en/article/473010

Download Persian Version:
https://daneshyari.com/article/473010

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jilong_zhang@mail.sdu.edu.cn (J.-L. Zhang), lzyang@sdu.edu.cn (L.-Z. Yang).

