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a b s t r a c t

Multiple objective optimization (MOO) models and solution methods are commonly used for multi-
criteria decision making in real-life engineering and management applications. Much research has been
conducted for continuous MOO problems, but MOO problems with discrete or mixed integer variables
and black-box objective functions arise frequently in practice. For example, in energy industry, optimal
development problems of oil gas fields, shale gas hydraulic fracturing, and carbon dioxide geologic
storage and enhanced oil recovery, may consider integer variables (number of wells, well drilling blocks),
continuous variables (e.g. bottom hole pressures, production rates), and the field performance is
typically evaluated by black-box reservoir simulation. These discrete or mixed integer MOO (DMOO)
problems with black-box objective functions are more challenging and require new MOO solution
techniques. We develop a direct zigzag (DZZ) search method by effectively integrating gradient-free
direct search and zigzag search for such DMOO problems. Based on three numerical example problems
including a mixed integer MOO problem associated with the optimal development of a carbon dioxide
capture and storage (CCS) project, DZZ is demonstrated to be computationally efficient. The numerical
results also suggest that DZZ significantly outperforms NSGA-II, a widely used genetic algorithms (GA)
method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Decision making problems with multiple criteria arise in var-
ious fields of engineering and sciences [1–6]. It is often not
possible that a decision (e.g. an inventory control policy or a
production system design plan) simultaneously optimizes all the
considered criteria. There are, instead, a set of alternatives that
trade off the decision criteria. Multi-criteria decision making prob-
lems can typically be analyzed with multi-objective optimization
(MOO) models. Researchers and practitioners in mathematics,
operations research, engineering, and management sciences, have
conducted a tremendous amount of work to develop theories,
methodologies, and applications of MOO. Many real-world MOO
problems include integer ordered or discrete decision variables.
Such discrete multi-objective optimization (DMOO) is more chal-
lenging due to the discontinuity of objective functions and the
discreteness of optimal solution set. In this work, DMOO problems
with discrete decision variables and black-box objective functions
are particularly of interest.

Most of existing research in multi-criteria decision making is
for deterministic and continuous MOO problems with closed-form
objective functions [7–14]. Current methods for continuous MOO
problems fall into two broad categories: (i) population-based
stochastic search methods and (ii) iterative pointwise solution
search methods. In category (i), many population-based methods
for MOO problems are variants of evolutionary algorithms, e.g.

genetic algorithms (GA) [15–20] and particle swarm optimization
(PSO) [21,22]. Evolutionary algorithms are widely used particularly
as comparison methods because they are general and relatively
easy to implement. The slow convergence, if they have however,
makes them impractical for many real-world MOO problems,
where the objective function evaluations may entail intense com-
puting. Much MOO research has been in development of the
category (ii) of iterative pointwise solution search algorithms that
typically solve a sequence of parameterized single-objective opti-
mization subproblems for a sequence of Pareto optimal solutions
[23–25], including the popular weighted sum method [13] and the
normal boundary intersection method [11]. Continuation based
methods [26,27,14,28–31] that are capable of tracing a Pareto front
(characterized by a continuous manifold) have been developed
recently. Some other important development for continuous MOO
of category (ii) includes zigzag search [32] and other local search
based algorithms [33,34]. Refer to [35,36,1] and recent books
[9,12,37] for detailed discussions of existing methods, analysis,
and applications of continuous MOO.

DMOO problems commonly exist in real-life engineering and
management projects, but efficient algorithms for discrete and
black-box MOO problems are still missing. To fill this important
gap and develop practical solution methods, we propose a new
DMOO method based on a direct zigzag (DZZ) search approach.
DZZ method searches Pareto optimal solutions along a zigzag path
close to the Pareto front. The local zigzag path is identified based
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on a direct search approach (e.g., Hooke Jeeves method [38] or
pattern search [39]) in which the search procedure only compares
function values without computing the gradients of objective
functions. Thus, DZZ is general and can be applied for black-box
DMOO problems, where the objective functions are evaluated
through numerical or simulation processes. DZZ also guarantees
the local Pareto optimality (discussed in Section 3.4), due to the
neighborhood search employed within the direct search proce-
dure. We demonstrate the DZZ efficiency using three DMOO
example problems including an optimal development case of
carbon subsurface sequestration. The optimization performance
of DZZ is compared to that of a non-dominated sorting genetic
algorithm (NSGA-II) [40], one state-of-the-art method in the
family of Genetic Algorithms. The promising optimization results
of DZZ suggest that DZZ outperforms NSGA-II in terms of optimi-
zation efficiency and solution quality.

The rest part of the paper is organized as follows. Section 2
provides a formal statement of DMOO problems and introduces
some relevant concepts of MOO. Section 3 discusses the details of
the DZZ search method and presents one algorithmic implemen-
tation of DZZ, specifically for bi-objective optimization problems.
In Section 4, we test the proposed DZZ algorithm on three example
problems including two taken from the recent literature and one
example case in the carbon geologic sequestration project. Con-
clusions and future research are discussed in the last section.

2. Problem statement

General mixed integer MOO problems with both integer-valued
and continuous variables are formulated as follows.

ðPÞ min f ðxÞ; xAfZd1 � Rd2 g;
Subject to hiðxÞr0; i¼ 1;2;…; l:

Let X denote the feasible region in (P) and d¼ d1þd2. The
feasible region X is a set in the d-dimensional mixed integer space
that can be in general specified by l inequality constraints
hiðxÞr0; i¼ 1;2;…; l; for unconstrained MOO problems, l¼0.
These constraint functions are assumed to be deterministic with
closed functional forms. Within (P) the objective function f : Zd1 �
Rd2-Rk is defined by an analytic function or implicitly defined by
computer simulation processes. In the context of optimal devel-
opment of the carbon geological sequestration project, for exam-
ple, a bi-objective f could be the total quantity of carbon dioxide
injected into the storage field and the amount of mobile carbon
that has risk of leakage after a long storage time, say 1000 years.
The goal of (P) is to seek local Pareto optimal solutions of the
objective function f on X. The definition of Pareto optimality is
provided below.

Definition 1. For solutions x; yAX, x is said to weakly dominate y,
denoted as x≽y, if f iðxÞr f iðyÞ for i¼ 1;2;…; k. A solution xAX

strictly dominates or simply dominates yAX, denoted as xgy, if
x≽y and there exists at least one iAf1;2;…; kg so that f iðxÞo f iðyÞ.

Definition 2. A solution xAX is globally Pareto optimal or simply
Pareto optimal if there is no yAX such that ygx. A solution xAX

is said to be locally Pareto optimal for a neighborhood NδðxÞ
associated with x if no yANδðxÞ \ X satisfying ygx. The function
values f ðXnÞ for (local) Pareto solutions Xn displayed in the
objective space form the (local) Pareto front. A useful definition
of Nδ is discussed below.

Definition 3. Let x¼ ðx1; x2Þ; x1AZd1 ; x2ARd2 be a feasible solution
in X. The δ-neighborhood NδðxÞ of x includes feasible points
y¼ ðy1; y2ÞAX so that Jx�yJr1 and Jx2�y2 Jrδ, where
y1AZd1 and y2ARd2 .

For general mixed integer MOO problems, i.e. d2a0 in (P),
Definition 3 defines a neighborhood at x that includes a number of
(2d1 or fewer) separate points that are 1 unit distance away from x
and a set of points within a hypercube centered at x of dimension
δ in Rd2 . In numerical algorithm design, to verify a local Pareto
optimum with the neighborhood Nδ is computationally expensive
and error prone. Thus we consider δ-approximate Pareto optim-
ality based on a discrete (finite) neighborhood as stated in
Definition 4.

Definition 4. Given a δ40, a feasible solution xnAX is a
δ-approximate local Pareto minimum to (P) if xn≽y for any
yASδðxnÞ, where SδðxnÞ ¼ fy¼ ðy1; y2ÞAX : δr Jxn�yJr1; Jxn2�
y2 Jrδg consists of 2d or fewer feasible points near xn.

We develop a new DMOO method, termed DZZ, to quickly
identify a set of well-distributed approximate local Pareto optima
of (P) based on the above δ-approximate optimum definition. If
d2a0 in (P), we consider a small enough δ40 so that DZZ returns
a set of δ-approximate local Pareto optimal solutions to (P). If
d2 ¼ 0, then (P) is a DMOO problemwith integer decision variables.
In this case, a neighborhood definition with δ¼1 will be
N1ðxÞ ¼ fyAX : Jx�yJ ¼ 1g. For general DMOO problems with
the feasible set X�Rd containing a set of (finite or countably
infinite) discrete points, we may define a generic neighborhood
structure N(x) that contains 2d or fewer feasible points closest to x
coordinate-wise. Specifically,

NðxÞ ¼
ðy1;…; yi;…; ydÞAX : yi ¼ arg min

yi
ðxi�yiÞ if xiZyi; 8 ja i; xj ¼ yj; i¼ 1;2;…; d

ðy1;…; yi;…; ydÞAX : yi ¼ arg min
yi

ðyi�xiÞ if xioyi; 8 ja i; xj ¼ yj; i¼ 1;2;…; d;

8><
>:

where xi and yi are the ith coordinates of x and y respectively.
An alternative neighborhood for DMOO is based on Delaunay

Fig. 1. Example neighborhood structures for mixed integer, 2-dimensional integer, and discrete solution spaces.
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